1
|
Burley S, Bhatt R, Bhikadiya C, Bi C, Biester A, Biswas P, Bittrich S, Blaumann S, Brown R, Chao H, Chithari VR, Craig P, Crichlow G, Duarte J, Dutta S, Feng Z, Flatt J, Ghosh S, Goodsell D, Green RK, Guranovic V, Henry J, Hudson B, Joy M, Kaelber J, Khokhriakov I, Lai JS, Lawson C, Liang Y, Myers-Turnbull D, Peisach E, Persikova I, Piehl D, Pingale A, Rose Y, Sagendorf J, Sali A, Segura J, Sekharan M, Shao C, Smith J, Trumbull M, Vallat B, Voigt M, Webb B, Whetstone S, Wu-Wu A, Xing T, Young J, Zalevsky A, Zardecki C. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res 2025; 53:D564-D574. [PMID: 39607707 PMCID: PMC11701563 DOI: 10.1093/nar/gkae1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.org research-focused web portal. We report substantial additions to the tools and visualization features available at RCSB.org, which now delivers more than 227000 experimentally determined atomic-level three-dimensional (3D) biostructures stored in the global PDB archive alongside more than 1 million Computed Structure Models (CSMs) of proteins (including models for human, model organisms, select human pathogens, crop plants and organisms important for addressing climate change). In addition to providing support for 3D structure motif searches with user-provided coordinates, new features highlighted herein include query results organized by redundancy-reduced Groups and summary pages that facilitate exploration of groups of similar proteins. Newly released programmatic tools are also described, as are enhanced training opportunities.
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
- Rutgers Artificial Intelligence and Data Science (RAD) Collaboratory, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rusham Bhatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Alison Biester
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pratyoy Biswas
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Santiago Blaumann
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ronald Brown
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Henry Chao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vivek Reddy Chithari
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Paul A Craig
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Gregg V Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute, New Brunswick, NJ 08901, USA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Justin W Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David S Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute, New Brunswick, NJ 08901, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael Joy
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jason T Kaelber
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Igor Khokhriakov
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Jhih-Siang Lai
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Douglas Myers-Turnbull
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dennis W Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Aditya Pingale
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Jared Sagendorf
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Smith
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael Trumbull
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ben Webb
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongji Xing
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur Zalevsky
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Ille AM, Markosian C, Burley SK, Pasqualini R, Arap W. Prediction of peptide structural conformations with AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.03.626727. [PMID: 39677766 PMCID: PMC11642853 DOI: 10.1101/2024.12.03.626727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Protein structure prediction via artificial intelligence/machine learning (AI/ML) approaches has sparked substantial research interest in structural biology and adjacent disciplines. More recently, AlphaFold2 (AF2) has been adapted for the prediction of multiple structural conformations in addition to single-state structures. This novel avenue of research has focused on proteins (typically 50 residues in length or greater), while multi-conformation prediction of shorter peptides has not yet been explored in this context. Here, we report AF2-based structural conformation prediction of a total of 557 peptides (ranging in length from 10 to 40 residues) for a benchmark dataset with corresponding nuclear magnetic resonance (NMR)-determined conformational ensembles. De novo structure predictions were accompanied by structural comparison analyses to assess prediction accuracy. We found that the prediction of conformational ensembles for peptides with AF2 varied in accuracy versus NMR data, with average root-mean-square deviation (RMSD) among structured regions under 2.5 Å and average root-mean-square fluctuation (RMSF) differences under 1.5 Å. Our results reveal notable capabilities of AF2-based structural conformation prediction for peptides but also underscore the necessity for interpretation discretion.
Collapse
Affiliation(s)
- Alexander M. Ille
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Christopher Markosian
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Data Science and Artificial Intelligence (RAD) Collaboratory, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute, New Brunswick, NJ, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California-San Diego, La Jolla, San Diego, CA, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
- These authors jointly supervised the work
| | - Wadih Arap
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- These authors jointly supervised the work
| |
Collapse
|
3
|
Ille AM, Markosian C, Burley SK, Mathews MB, Pasqualini R, Arap W. Generative artificial intelligence performs rudimentary structural biology modeling. Sci Rep 2024; 14:19372. [PMID: 39169047 PMCID: PMC11339285 DOI: 10.1038/s41598-024-69021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural interaction analysis between the anti-viral nirmatrelvir and its target, the SARS-CoV-2 main protease. Geometric parameters of the generated structures typically approximated close to experimental references. However, modeling was sporadically error-prone and molecular complexity was not well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino acid residues involved in ligand binding along with corresponding bond distances. Despite current limitations, we show the current capacity of natural language generative AI to perform basic structural biology modeling and interaction analysis with atomic-scale accuracy.
Collapse
Affiliation(s)
- Alexander M Ille
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Christopher Markosian
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Rutgers Cancer Institute, Newark, NJ, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute, New Brunswick, NJ, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California-San Diego, La Jolla, San Diego, CA, USA
| | - Michael B Mathews
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute, Newark, NJ, USA.
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Wadih Arap
- Rutgers Cancer Institute, Newark, NJ, USA.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
4
|
Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Oncogene 2024; 43:2229-2243. [PMID: 38886570 PMCID: PMC11245395 DOI: 10.1038/s41388-024-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Steven X F Zheng
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| |
Collapse
|
5
|
Wang L, Wen Z, Liu SW, Zhang L, Finley C, Lee HJ, Fan HJS. Overview of AlphaFold2 and breakthroughs in overcoming its limitations. Comput Biol Med 2024; 176:108620. [PMID: 38761500 DOI: 10.1016/j.compbiomed.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Predicting three-dimensional (3D) protein structures has been challenging for decades. The emergence of AlphaFold2 (AF2), a deep learning-based machine learning method developed by DeepMind, became a game changer in the protein folding community. AF2 can predict a protein's three-dimensional structure with high confidence based on its amino acid sequence. Accurate prediction of protein structures can dramatically accelerate our understanding of biological mechanisms and provide a solid foundation for reliable drug design. Although AF2 breaks through the barriers in predicting protein structures, many rooms remain to be further studied. This review provides a brief historical overview of the development of protein structure prediction, covering template-based, template-free, and machine learning-based methods. In addition to reviewing the potential benefits (Pros) and considerations (Cons) of using AF2, this review summarizes the diverse applications, including protein structure predictions, dynamic changes, point mutation, integration of language model and experimental data, protein complex, and protein-peptide interaction. It underscores recent advancements in efficiency, reliability, and broad application of AF2. This comprehensive review offers valuable insights into the applications of AF2 and AF2-inspired AI methods in structural biology and its potential for clinically significant drug target discovery.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Shi-Wei Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China
| | - Lihong Zhang
- Digestive Department, Binhai New Area Hospital of TCM Tianjin, Tianjin, 300451, China
| | - Cierra Finley
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN, 38015, USA
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN, 38015, USA; Division of Natural & Mathematical Sciences, LeMoyne-Own College, Memphis, TN, 38126, USA.
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong City, Sichuan Province, 64300, China.
| |
Collapse
|
6
|
Ille AM, Markosian C, Burley SK, Mathews MB, Pasqualini R, Arap W. Generative artificial intelligence performs rudimentary structural biology modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575113. [PMID: 38293060 PMCID: PMC10827103 DOI: 10.1101/2024.01.10.575113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural interaction analysis between nirmatrelvir and its target, the SARS-CoV-2 main protease. Geometric parameters of the generated structures typically approximated close to experimental references. However, modeling was sporadically error-prone and molecular complexity was not well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino acid residues involved in ligand binding along with corresponding bond distances. Despite current limitations, we show the capacity of natural language generative AI to perform basic structural biology modeling and interaction analysis with atomic-scale accuracy.
Collapse
Affiliation(s)
- Alexander M. Ille
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Christopher Markosian
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA
| | - Michael B. Mathews
- School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
7
|
Burley SK, Piehl DW, Vallat B, Zardecki C. RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures. IUCRJ 2024; 11:279-286. [PMID: 38597878 PMCID: PMC11067742 DOI: 10.1107/s2052252524002604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Biology Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Vallat B, Berman HM. Structural highlights of macromolecular complexes and assemblies. Curr Opin Struct Biol 2024; 85:102773. [PMID: 38271778 DOI: 10.1016/j.sbi.2023.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
The structures of macromolecular assemblies have given us deep insights into cellular processes and have profoundly impacted biological research and drug discovery. We highlight the structures of macromolecular assemblies that have been modeled using integrative and computational methods and describe how open access to these structures from structural archives has empowered the research community. The arsenal of experimental and computational methods for structure determination ensures a future where whole organelles and cells can be modeled.
Collapse
Affiliation(s)
- Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Helen M Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles CA 90089, USA
| |
Collapse
|
9
|
Alderson TR, Pritišanac I, Kolarić Đ, Moses AM, Forman-Kay JD. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proc Natl Acad Sci U S A 2023; 120:e2304302120. [PMID: 37878721 PMCID: PMC10622901 DOI: 10.1073/pnas.2304302120] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
The AlphaFold Protein Structure Database contains predicted structures for millions of proteins. For the majority of human proteins that contain intrinsically disordered regions (IDRs), which do not adopt a stable structure, it is generally assumed that these regions have low AlphaFold2 confidence scores that reflect low-confidence structural predictions. Here, we show that AlphaFold2 assigns confident structures to nearly 15% of human IDRs. By comparison to experimental NMR data for a subset of IDRs that are known to conditionally fold (i.e., upon binding or under other specific conditions), we find that AlphaFold2 often predicts the structure of the conditionally folded state. Based on databases of IDRs that are known to conditionally fold, we estimate that AlphaFold2 can identify conditionally folding IDRs at a precision as high as 88% at a 10% false positive rate, which is remarkable considering that conditionally folded IDR structures were minimally represented in its training data. We find that human disease mutations are nearly fivefold enriched in conditionally folded IDRs over IDRs in general and that up to 80% of IDRs in prokaryotes are predicted to conditionally fold, compared to less than 20% of eukaryotic IDRs. These results indicate that a large majority of IDRs in the proteomes of human and other eukaryotes function in the absence of conditional folding, but the regions that do acquire folds are more sensitive to mutations. We emphasize that the AlphaFold2 predictions do not reveal functionally relevant structural plasticity within IDRs and cannot offer realistic ensemble representations of conditionally folded IDRs.
Collapse
Affiliation(s)
- T. Reid Alderson
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 35G, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz8010, Austria
| | - Đesika Kolarić
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz8010, Austria
| | - Alan M. Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 35G, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
10
|
Vila JA. Protein structure prediction from the complementary science perspective. Biophys Rev 2023; 15:439-445. [PMID: 37681107 PMCID: PMC10480374 DOI: 10.1007/s12551-023-01107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
A comparative analysis between two problems-apparently unrelated-which are solved in a period of ~400 years, viz., the accurate prediction of both the planetary orbits and the protein structures, leads to inferred conjectures that go far beyond the existence of a common path in their resolution, i.e., observation → pattern recognition → modeling. The preliminary results from this analysis indicate that complementary science, together with a new perspective on protein folding, may help us discover common features that could contribute to a more in-depth understanding of still-unsolved problems such as protein folding.
Collapse
Affiliation(s)
- Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
11
|
Li EH, Spaman LE, Tejero R, Janet Huang Y, Ramelot TA, Fraga KJ, Prestegard JH, Kennedy MA, Montelione GT. Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107481. [PMID: 37257257 PMCID: PMC10659763 DOI: 10.1016/j.jmr.2023.107481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in molecular modeling of protein structures are changing the field of structural biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based deep learning to predict models of protein structures with high accuracy relative to structures determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 models to structures determined using solution NMR data, both high similarities and distinct differences have been observed. Since AF2 was trained on X-ray crystal and cryoEM structures, we assessed how accurately AF2 can model small, monomeric, solution protein NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have homologous structures in the Protein Data Bank at the time of AF2 training. We identified nine open-source protein NMR data sets for such "blind" targets, including chemical shift, raw NMR FID data, NOESY peak lists, and (for 1 case) 15N-1H residual dipolar coupling data. For these nine small (70-108 residues) monomeric proteins, we generated AF2 prediction models and assessed how well these models fit to these experimental NMR data, using several well-established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR data nearly as well, or sometimes better than, the corresponding NMR structure models previously deposited in the Protein Data Bank. These results provide benchmark NMR data for assessing new NMR data analysis and protein structure prediction methods. They also document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more generally for hypothesis generation in structural biology research.
Collapse
Affiliation(s)
- Ethan H Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura E Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Keith J Fraga
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Duan M, Li K, Zhang L, Zhou Y, Bian L, Wang C. Screening, characterization and specific binding mechanism of aptamers against human plasminogen Kringle 5. Bioorg Chem 2023; 137:106579. [PMID: 37149949 DOI: 10.1016/j.bioorg.2023.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of ∼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yaqi Zhou
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Cuiling Wang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
13
|
Li X, Guo W, Zhao L, Xu D, Xu X, Han Y, Wang C, Jiang Y, Wang Y, Xu Y. Investigating the in vivo effect of Tribulus terrestris extract in middle cerebral artery occlusion rats using LC-MS-based metabolomics combined with molecular docking. Biomed Chromatogr 2023; 37:e5614. [PMID: 36883198 DOI: 10.1002/bmc.5614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Tribulus terrestris L. fruit (TT) is a traditional Chinese herbal medicine used to treat ischemic stroke (IS). This study aimed to investigate the protective effect of TT extract, named TT15, on middle cerebral artery occlusion (MCAO) rats using metabolomics and molecular docking and find the targets of action and the material basis of TT15 against IS. The results of the infarct volume and neurological defect scores confirmed the efficacy of TT15. Serum metabolomics analysis using LC-MS revealed that model group animals experienced a variety of metabolic disturbances when compared to the sham group. TT15 can restore the MCAO-induced serum metabolite changes by modulating multiple metabolic pathways. Six enzymes were highlighted by the metabolite-reaction-enzyme-gene (M-R-E-G) network analysis, which might be the possible targets for the TT15 against IS. Molecular docking analysis was applied to show the binding affinities between active compounds and these enzymes. The representative docking mode with the lowest binding energy between three compounds and phospholipase A 2 (PLA2) and peroxidase (POD) was displayed by the ribbon binding map. This study profiles the metabolic changes in MCAO-induced IS and investigates the efficacy and the corresponding mechanism of TT15 in the treatment of IS.
Collapse
Affiliation(s)
- Xingxing Li
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Liang Zhao
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Xiaohang Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yuqing Han
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Chengyan Wang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yingzi Jiang
- School of Pharmaceutical Sciences, Yanbian University, Yanji, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
14
|
Keskin Karakoyun H, Yüksel ŞK, Amanoglu I, Naserikhojasteh L, Yeşilyurt A, Yakıcıer C, Timuçin E, Akyerli CB. Evaluation of AlphaFold structure-based protein stability prediction on missense variations in cancer. Front Genet 2023; 14:1052383. [PMID: 36896237 PMCID: PMC9988940 DOI: 10.3389/fgene.2023.1052383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Identifying pathogenic missense variants in hereditary cancer is critical to the efforts of patient surveillance and risk-reduction strategies. For this purpose, many different gene panels consisting of different number and/or set of genes are available and we are particularly interested in a panel of 26 genes with a varying degree of hereditary cancer risk consisting of ABRAXAS1, ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MEN1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. In this study, we have compiled a collection of the missense variations reported in any of these 26 genes. More than a thousand missense variants were collected from ClinVar and the targeted screen of a breast cancer cohort of 355 patients which contributed to this set with 160 novel missense variations. We analyzed the impact of the missense variations on protein stability by five different predictors including both sequence- (SAAF2EC and MUpro) and structure-based (Maestro, mCSM, CUPSAT) predictors. For the structure-based tools, we have utilized the AlphaFold (AF2) protein structures which comprise the first structural analysis of this hereditary cancer proteins. Our results agreed with the recent benchmarks that computed the power of stability predictors in discriminating the pathogenic variants. Overall, we reported a low-to-medium-level performance for the stability predictors in discriminating pathogenic variants, except MUpro which had an AUROC of 0.534 (95% CI [0.499-0.570]). The AUROC values ranged between 0.614-0.719 for the total set and 0.596-0.682 for the set with high AF2 confidence regions. Furthermore, our findings revealed that the confidence score for a given variant in the AF2 structure could alone predict pathogenicity more robustly than any of the tested stability predictors with an AUROC of 0.852. Altogether, this study represents the first structural analysis of the 26 hereditary cancer genes underscoring 1) the thermodynamic stability predicted from AF2 structures as a moderate and 2) the confidence score of AF2 as a strong descriptor for variant pathogenicity.
Collapse
Affiliation(s)
- Hilal Keskin Karakoyun
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Şirin K. Yüksel
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ilayda Amanoglu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Lara Naserikhojasteh
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ahmet Yeşilyurt
- Acibadem Labgen Genetic Diagnosis Centre, Acibadem Health Group, Istanbul, Türkiye
| | - Cengiz Yakıcıer
- Acibadem Pathology Laboratories, Acibadem Health Group, Istanbul, Türkiye
| | - Emel Timuçin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Cemaliye B. Akyerli
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
15
|
Li EH, Spaman L, Tejero R, Huang YJ, Ramelot TA, Fraga KJ, Prestegard JH, Kennedy MA, Montelione GT. Blind Assessment of Monomeric AlphaFold2 Protein Structure Models with Experimental NMR Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525096. [PMID: 36712039 PMCID: PMC9882346 DOI: 10.1101/2023.01.22.525096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in molecular modeling of protein structures are changing the field of structural biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based deep learning to predict models of protein structures with high accuracy relative to structures determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 models to structures determined using solution NMR data, both high similarities and distinct differences have been observed. Since AF2 was trained on X-ray crystal and cryoEM structures, we assessed how accurately AF2 can model small, monomeric, solution protein NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have homologous structures in the Protein Data Bank at the time of AF2 training. We identified nine open source protein NMR data sets for such "blind" targets, including chemical shift, raw NMR FID data, NOESY peak lists, and (for 1 case) 15 N- 1 H residual dipolar coupling data. For these nine small (70 - 108 residues) monomeric proteins, we generated AF2 prediction models and assessed how well these models fit to these experimental NMR data, using several well-established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR data nearly as well, or sometimes better than, the corresponding NMR structure models previously deposited in the Protein Data Bank. These results provide benchmark NMR data for assessing new NMR data analysis and protein structure prediction methods. They also document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more generally for hypothesis generation in structural biology research. Highlights AF2 models assessed against NMR data for 9 monomeric proteins not used in training.AF2 models fit NMR data almost as well as the experimentally-determined structures. RPF-DP, PSVS , and PDBStat software provide structure quality and RDC assessment. RPF-DP analysis using AF2 models suggests multiple conformational states.
Collapse
Affiliation(s)
- Ethan H. Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Laura Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Theresa A. Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Keith J. Fraga
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 USA
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
16
|
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan S, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 2023; 51:D488-D508. [PMID: 36420884 PMCID: PMC9825554 DOI: 10.1093/nar/gkac1077] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Henry Chao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li Chen
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Paul A Craig
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Gregg V Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth Dalenberg
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Maryam Fayazi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Justin W Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sai Ganesan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David S Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Igor Khokhriakov
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dennis W Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ben Webb
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur Zalevsky
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci 2022; 31:e4482. [PMID: 36281733 PMCID: PMC9667899 DOI: 10.1002/pro.4482] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
- Department of Chemistry and Chemical Biology, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Henry Chao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Li Chen
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Paul A. Craig
- School of Chemistry and Materials ScienceRochester Institute of TechnologyRochesterNew YorkUSA
| | - Gregg V. Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Kenneth Dalenberg
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Maryam Fayazi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Sai J. Ganesan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David S. Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New Jersey, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Igor Khokhriakov
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Catherine L. Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of CaliforniaLa JollaCaliforniaUSA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Benjamin Webb
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Arthur Zalevsky
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic SciencesQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Pharmaceutical ChemistryQuantitative Biosciences Institute, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
18
|
Compton EC, Cruz T, Andreassen M, Beveridge S, Bosch D, Randall DR, Livingstone D. Developing an Artificial Intelligence Tool to Predict Vocal Cord Pathology in Primary Care Settings. Laryngoscope 2022. [PMID: 36226791 DOI: 10.1002/lary.30432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Diagnostic tools for voice disorders are lacking for primary care physicians. Artificial intelligence (AI) tools may add to the armamentarium for physicians, decreasing the time to diagnosis and limiting the burden of dysphonia. METHODS Voice recordings of patients were collected from 2019 to 2021 using smartphones. The Saarbruecken dataset was included for comparison. Audio files were converted to mel-spectrograms using TensorFlow. Diagnostic categories were created to group pathology, including neurological and muscular disorders, inflammatory, mass lesions, and normal. The samples were further separated into sustained/a/and the rainbow passage. RESULTS Two hundred three prospective samples and 1131 samples were used from the Saarbruecken database. The AI detected abnormal pathology with an F1-score of 98%. The artificial neural network (ANN) differentiated key pathologies, including unilateral paralysis, laryngitis, adductor spasmodic dysphonia (ADSD), mass lesions, and normal samples with 39%-87% F-1 scores. The Calgary database models had higher F-1 scores in a head-to-head comparison to the Saarbruecken and combined datasets (87% vs. 58% and 50%). The AI outperformed otolaryngologists using a standardized test set of recordings (83% compared to 55% ± 15%). CONCLUSION An AI tool was created to differentiate pathology by individual or categorical diagnosis with high evaluation metrics. Prospective data should be collected in a controlled fashion to reduce intrinsic variability between recordings. Multi-center data collaborations are imperative to increase the prediction capability of AI tools for detecting vocal cord pathology. We provide proof-of-concept for an AI tool to assist primary care physicians in managing dysphonic patients. LEVEL OF EVIDENCE 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Evan C Compton
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tim Cruz
- Department of Data Science and Analytics, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Meri Andreassen
- Section of Otolaryngology-Head and Neck Surgery, Calgary Voice Program, Alberta Health Services, Calgary, Alberta, Canada
| | - Shari Beveridge
- Section of Otolaryngology-Head and Neck Surgery, Calgary Voice Program, Alberta Health Services, Calgary, Alberta, Canada
| | - Doug Bosch
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derrick R Randall
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Devon Livingstone
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Shao C, Bittrich S, Wang S, Burley SK. Assessing PDB macromolecular crystal structure confidence at the individual amino acid residue level. Structure 2022; 30:1385-1394.e3. [PMID: 36049478 PMCID: PMC9547844 DOI: 10.1016/j.str.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Approximately 87% of the more than 190,000 atomic-level three-dimensional (3D) biostructures in the PDB were determined using macromolecular crystallography (MX). Agreement between 3D atomic coordinates and experimental data for >100 million individual amino acid residues occurring within ∼150,000 PDB MX structures was analyzed in detail. The real-space correlation coefficient (RSCC) calculated using the 3D atomic coordinates for each residue and experimental-data-derived electron density enables outlier detection of unreliable atomic coordinates (particularly important for poorly resolved side-chain atoms) and ready evaluation of local structure quality by PDB users. For human protein MX structures in PDB, comparisons of the per-residue RSCC metric with AlphaFold2-computed structure model confidence (pLDDT-predicted local distance difference test) document (1) that RSCC values and pLDDT scores are correlated (median correlation coefficient ∼0.41), and (2) that experimentally determined MX structures (3.5 Å resolution or better) are more reliable than AlphaFold2-computed structure models and should be used preferentially whenever possible.
Collapse
Affiliation(s)
- Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sijian Wang
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Statistics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Burley SK, Berman HM, Duarte JM, Feng Z, Flatt JW, Hudson BP, Lowe R, Peisach E, Piehl DW, Rose Y, Sali A, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Young JY, Zardecki C. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules 2022; 12:1425. [PMID: 36291635 PMCID: PMC9599165 DOI: 10.3390/biom12101425] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Helen M. Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Exploring protein symmetry at the RCSB Protein Data Bank. Emerg Top Life Sci 2022; 6:231-243. [PMID: 35801924 PMCID: PMC9472815 DOI: 10.1042/etls20210267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry.
Collapse
|
22
|
Goodsell DS, Burley SK. RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure 2022; 30:55-68.e2. [PMID: 34739839 PMCID: PMC8567414 DOI: 10.1016/j.str.2021.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Structural biologists provide direct insights into the molecular bases of human health and disease. The open-access Protein Data Bank (PDB) stores and delivers three-dimensional (3D) biostructure data that facilitate discovery and development of therapeutic agents and diagnostic tools. We are in the midst of a revolution in vaccinology. Non-infectious mRNA vaccines have been proven during the coronavirus disease 2019 (COVID-19) pandemic. This new technology underpins nimble discovery and clinical development platforms that use knowledge of 3D viral protein structures for societal benefit. The RCSB PDB supports vaccine designers through expert biocuration and rigorous validation of 3D structures; open-access dissemination of structure information; and search, visualization, and analysis tools for structure-guided design efforts. This resource article examines the structural biology underpinning the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mRNA vaccines and enumerates some of the many protein structures in the PDB archive that could guide design of new countermeasures against existing and emerging viral pathogens.
Collapse
Affiliation(s)
- David S Goodsell
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen K Burley
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, CA 92093, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Goodsell DS, Ghosh S, Kramer Green R, Guranovic V, Henry J, Hudson BP, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Whetstone S, Young JY, Zardecki C. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci 2022; 31:187-208. [PMID: 34676613 PMCID: PMC8740825 DOI: 10.1002/pro.4213] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Charmi Bhikadiya
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chunxiao Bi
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Sebastian Bittrich
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Li Chen
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Gregg V. Crichlow
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Maryam Fayazi
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Sai J. Ganesan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - David S. Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Sutapa Ghosh
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Rachel Kramer Green
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Vladimir Guranovic
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jeremy Henry
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Catherine L. Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Dennis W. Piehl
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Yana Rose
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joan Segura
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Chenghua Shao
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Shamara Whetstone
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
24
|
Zardecki C, Dutta S, Goodsell DS, Lowe R, Voigt M, Burley SK. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Sci 2022; 31:129-140. [PMID: 34601771 PMCID: PMC8740840 DOI: 10.1002/pro.4200] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic-level three-dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB-101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB-101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popular Molecule of the Month series, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB-101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year-on-year. In addition, PDB-101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB-101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.
Collapse
Affiliation(s)
- Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - David S. Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Robert Lowe
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Institute for Quantitative BiomedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|