1
|
Salar S, Silletti S, Schubot FD. Evidence of bidirectional transmembrane signaling by the sensor histidine kinase GacS from Pseudomonas aeruginosa. J Biol Chem 2025; 301:108521. [PMID: 40280415 DOI: 10.1016/j.jbc.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Membrane-embedded signaling histidine kinases (SKs) from two-component and phosphorelay signal transduction systems play central roles in the gene regulation of bacteria, fungi, and plants. The SK GacS is a global regulator of gene expression in the human pathogen Pseudomonas aeruginosa. The interactions between GacS and another SK, RetS, are a model for studying non-canonical crosstalk in multikinase networks. During planktonic growth, RetS inhibits GacS to upregulate expression of virulence factors associated with acute P. aeruginosa infections and repress genes linked to chronic infection. Conversely, GacS activation promotes biofilm formation and chronic infection but suppresses factors required during acute infection. Using a combination of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and mutational analysis in conjunction with functional assays, we show that binding of an extracellular ligand promotes GacS signaling through two mechanisms: (1) by increasing GacS autokinase activity and (2) by decreasing the affinity between GacS and RetS. Intriguingly, RetS binding to the intracellular histidine kinase domain of GacS also triggered conformational changes in the extracellular sensory domain of GacS. This allosteric effect was confirmed in a biochemical assay, showing RetS increases the affinity of a chimeric CitAGacS receptor for citrate by almost tenfold. This finding establishes the first precedent of inside-out cross-membrane signaling in SK systems. Taken together, our data are consistent with a model wherein RetS binding primes GacS for signal sensing during planktonic growth. Binding of the unknown ligand at the onset of biofilm formation causes dissociation of the RetS-GacS complex to lock GacS in a kinase ON conformation.
Collapse
Affiliation(s)
- Safoura Salar
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| |
Collapse
|
2
|
Rosales-Cruz A, Reyes-Nicolau J, Minto-González E, Meneses-Carbajal A, Mondragón-Albarrán C, López-Pliego L, Castañeda M. A Homolog of the Histidine Kinase RetS Controls the Synthesis of Alginates, PHB, Alkylresorcinols, and Motility in Azotobacter vinelandii. Curr Microbiol 2024; 81:311. [PMID: 39153035 PMCID: PMC11330419 DOI: 10.1007/s00284-024-03835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
Collapse
Affiliation(s)
- Araceli Rosales-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Jimena Reyes-Nicolau
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Eduardo Minto-González
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Alan Meneses-Carbajal
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Claudia Mondragón-Albarrán
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico.
| |
Collapse
|
3
|
Urra G, Valdés-Muñoz E, Suardiaz R, Hernández-Rodríguez EW, Palma JM, Ríos-Rozas SE, Flores-Morales CA, Alegría-Arcos M, Yáñez O, Morales-Quintana L, D’Afonseca V, Bustos D. From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins. Int J Mol Sci 2024; 25:8027. [PMID: 39125594 PMCID: PMC11312079 DOI: 10.3390/ijms25158027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | - Elizabeth Valdés-Muñoz
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile;
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Erix W. Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Jonathan M. Palma
- Facultad de Ingeniería, Universidad de Talca, Curicó 3344158, Chile;
| | - Sofía E. Ríos-Rozas
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | | | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile;
| | - Vívian D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave. San Miguel 3605, Talca 3466706, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| |
Collapse
|
4
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
5
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|