1
|
Supercritical solvent impregnation of sodium valproate nanoparticles on polymers: Characterization and optimization of the operational parameters. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Horvat G, Pantić M, Knez Ž, Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels 2022; 8:gels8070438. [PMID: 35877523 PMCID: PMC9316429 DOI: 10.3390/gels8070438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
This review discusses the most commonly employed methods for determining pore size and pore size distribution in bioaerogels. Aerogels are materials with high porosity and large surface areas. Most of their pores are in the range of mesopores, between 2 and 50 nm. They often have smaller or larger pores, which presents a significant challenge in determining the exact mean pore size and pore size distribution in such materials. The precision and actual value of the pore size are of considerable importance since pore size and pore size distribution are among the main properties of aerogels and are often directly connected with the final application of those materials. However, many recently published papers discuss or present pore size as one of the essential achievements despite the misinterpretation or the wrong assignments of pore size determination. This review will help future research and publications evaluate the pore size of aerogels more precisely and discuss it correctly. The study covers methods such as gas adsorption, from which BJH and DFT models are often used, SEM, mercury porosimetry, and thermoporometry. The methods are described, and the results obtained are discussed. The following paper shows that there is still no precise method for determining pore size distribution or mean pore size in aerogels until now. Knowing that, it is expected that this field will evolve in the future.
Collapse
Affiliation(s)
- Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Milica Pantić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Correspondence:
| |
Collapse
|
3
|
Chartier C, Buwalda S, Van Den Berghe H, Nottelet B, Budtova T. Tuning the properties of porous chitosan: Aerogels and cryogels. Int J Biol Macromol 2022; 202:215-223. [PMID: 35033531 DOI: 10.1016/j.ijbiomac.2022.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023]
Abstract
Highly porous chitosan-based materials were prepared via dissolution, non-solvent induced phase separation and drying using different methods. The goal was to tune the morphology and properties of chitosan porous materials by varying process parameters. Chitosan concentration, concentration of sodium hydroxide in the coagulation bath and aging time were varied. Drying was performed via freeze-drying leading to "cryogels" or via drying with supercritical CO2 leading to "aerogels". Cryogels were of lower density than aerogels (0.03-0.12 g/cm3vs 0.07-0.26 g/cm3, respectively) and had a lower specific surface area (50-70 vs 200-270 m2/g, respectively). The absorption of simulated wound exudate by chitosan aerogels and cryogels was studied in view of their potential applications as wound dressing. Higher absorption was obtained for cryogels (530-1500%) as compared to aerogels (200-610%).
Collapse
Affiliation(s)
- Coraline Chartier
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Sytze Buwalda
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Hélène Van Den Berghe
- Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Benjamin Nottelet
- Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
4
|
Preparation of Solid Dispersions of Simvastatin and Soluplus Using a Single-Step Organic Solvent-Free Supercritical Fluid Process for the Drug Solubility and Dissolution Rate Enhancement. Pharmaceuticals (Basel) 2021; 14:ph14090846. [PMID: 34577546 PMCID: PMC8468910 DOI: 10.3390/ph14090846] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The study was designed to investigate the feasibility of supercritical carbon dioxide (scCO2) processing for the preparation of simvastatin (SIM) solid dispersions (SDs) in Soluplus® (SOL) at temperatures below polymer’s glass transition. The SIM content in the SDs experimental design was kept at 10, 20 and 30% to study the effect of the drug–polymer ratio on the successful preparation of SDs. The SIM–SOL formulations, physical mixtures (PMs) and SDs were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and dissolution studies. The scCO2 processing conditions and drug–polymer ratio were found to influence the physicochemical properties of the drug in formulated SDs. SIM is a highly crystalline drug; however, physicochemical characterisation carried out by SEM, DSC, and XRD demonstrated the presence of SIM in amorphous nature within the SDs. The SIM–SOL SDs showed enhanced drug dissolution rates, with 100% being released within 45 min. Moreover, the drug dissolution from SDs was faster and higher in comparison to PMs. In conclusion, this study shows that SIM–SOL dispersions can be successfully prepared using a solvent-free supercritical fluid process to enhance dissolution rate of the drug.
Collapse
|
5
|
Influence of the Impregnation Technique on the Release of Esomeprazole from Various Bioaerogels. Polymers (Basel) 2021; 13:polym13111882. [PMID: 34204041 PMCID: PMC8201251 DOI: 10.3390/polym13111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
The presented study shows the possibility of using bioaerogels, namely neat alginate, pectin, chitosan aerogels, and alginate and pectin aerogels coated with chitosan, as drug delivery systems for esomeprazole. Two different techniques were used for the impregnation of esomeprazole: Supercritical impregnation, and diffusion via ethanol during the sol-gel synthesis. The prepared samples were characterized by employing N2 adsorption-desorption analysis, TGA/DSC, and FTIR. The achieved loadings were satisfactory for all the tested samples and showed to be dependent on the technique used for impregnation. In all cases, higher loadings were achieved when impregnation via diffusion from ethanol was used. Extensive release studies were performed for all impregnated samples. The in vitro dissolution profiles were found to be dependent on the carrier and impregnation method used. Most importantly, in all cases more controlled and delayed release was achieved with the bioaerogels compared to using pure esomeprazole.
Collapse
|
6
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
7
|
Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
9
|
Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Albuquerque GA, Bezerra FWF, de Oliveira MS, da Costa WA, de Carvalho Junior RN, Joele MRSP. Supercritical CO2 Impregnation of Piper divaricatum Essential Oil in Fish (Cynoscion acoupa) Skin Gelatin Films. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02514-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Tabernero A, Cardea S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110940. [PMID: 32409086 DOI: 10.1016/j.msec.2020.110940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Microbial exopolysaccharides are polymers that show a great potential for biomedical applications, such as tissue engineering applications and drug delivery, due to their biocompatibility, biodegradability and their gelling properties. These polysaccharides are obtained from a microorganism culture with a relatively straightforward downstream process thanks to their extracellular character, and can be processed to obtain aerogels, fibers and micro- or nano-particles with conventional techniques. However, these techniques present several disadvantages in that they involve time-consuming processes and the use of toxic solvents. Supercritical carbon dioxide techniques can overcome these drawbacks, but their use for processing microbial exopolysaccharides is not extended in the scientific community. This review describes the most frequently used exopolysaccharides in biomedical applications and how they can be obtained, as well as the different supercritical carbon dioxide techniques that can be used for processing them and their challenges. Specifically, high pressure shows a great potential to process and sterilize exopolysaccharide biomaterials for biomedical applications (e.g. tissue engineering or drug delivery systems) in spite of the disadvantage concerning the hydrophilicity of this type of polymers.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, SA, Spain
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
12
|
Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int J Biol Macromol 2019; 129:68-77. [DOI: 10.1016/j.ijbiomac.2019.01.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
|
14
|
Rojas A, Torres A, José Galotto M, Guarda A, Julio R. Supercritical impregnation for food applications: a review of the effect of the operational variables on the active compound loading. Crit Rev Food Sci Nutr 2019; 60:1290-1301. [PMID: 30729794 DOI: 10.1080/10408398.2019.1567459] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scCO2-assisted impregnation process has arisen as an effective method to impregnate solid materials. Its multiple advantages include high diffusion, it allows to obtain free-solvent materials and to operate under low temperatures, which permits to process thermolabile solutes. These characteristics have allowed its application at industrial scale for the impregnation of wood with fungicides and in the last years for textile dyeing. Meanwhile, other numerous applications are still being studied at laboratory scale. One potential field of application corresponds to the food-related industry, which includes the use of scCO2-assisted impregnation process to develop active materials for food packaging and to generate food-grade materials loaded with nutraceuticals for functional food applications. In this framework, this article summarizes the advantages and the main drawbacks with the scCO2-assisted impregnation process. The effect of the processing variables of the scCO2-assisted impregnation process is discussed in terms of the incorporation of active compounds within polymer structures. Including the principles and description of the process and a review of the investigated systems for a better understanding.
Collapse
Affiliation(s)
- Adrián Rojas
- Laboratory of Membrane Separation Processes (LabProSeM) Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile.,Food Packaging Laboratory Department of Food Science and Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - Alejandra Torres
- Food Packaging Laboratory Department of Food Science and Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - María José Galotto
- Food Packaging Laboratory Department of Food Science and Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - Abel Guarda
- Food Packaging Laboratory Department of Food Science and Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile, Santiago, Chile
| | - Romero Julio
- Laboratory of Membrane Separation Processes (LabProSeM) Department of Chemical Engineering, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Couto R, Seifried B, Yépez B, Moquin P, Temelli F. Adsorptive precipitation of co-enzyme Q10 on PGX-processed β-glucan powder. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Nooshkam M, Babazadeh A, Jooyandeh H. Lactulose: Properties, techno-functional food applications, and food grade delivery system. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Solovieva A, Cherkasova A, Glagolev N, Kopylov A, Timashev P, Tsypina S, Bagratashvili V. Stable “coloured” states of spirooxazine photochrom molecules immobilized in polymer matrixes by supercritical carbon dioxide. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ubeyitogullari A, Ciftci ON. Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Supercritical Impregnation of Active Components into Polymers for Food Packaging Applications. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1937-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Medeiros GR, Ferreira SR, Carciofi BA. High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Torres A, Ilabaca E, Rojas A, Rodríguez F, Galotto MJ, Guarda A, Villegas C, Romero J. Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Obaidat RM, Tashtoush BM, Awad AA, Al Bustami RT. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions. AAPS PharmSciTech 2017; 18:481-493. [PMID: 27116202 DOI: 10.1208/s12249-016-0492-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/30/2016] [Indexed: 11/30/2022] Open
Abstract
Tacrolimus is an immunosuppressant agent that suffers from poor and variable bioavailability. This can be related to limited solubility and dissolution. The main objective of this study is to use SFT to prepare solid dispersions of tacrolimus in order to enhance its dissolution. SFT was selected since it offers several advantages over conventional techniques such as efficiency and stability. Several solid dispersions of tacrolimus were prepared using SFT to enhance its dissolution. The selected polymers included soluplus, PVP, HPMC, and porous chitosan. TPGS was used as a surfactant additive with chitosan, HPMC, and PVP. Soluplus dispersions were used to study the effect of processing parameters (time, temperature, and pressure) on loading efficiency (LE) and dissolution of the preparation. Physicochemical characterization was performed using DSC, X-ray diffraction, FTIR analysis, SEM, and in vitro drug release. Stability testing was evaluated after 3 months for selected dispersions. Significant improvement for the release profile was achieved for the prepared dispersions. Better release achieved in the soluplus dispersions which reached maximum cumulative release equal to 98.76% after 24 h. Drug precipitated in its amorphous form in all prepared dispersions except those prepared from chitosan. All dispersions were physically stable except for PVP preparations that contained TPGS which started to re-crystallize after one month. Prepared dispersions were proved to be affected by supercritical processing parameters. In conclusion, SFT was successfully used to prepare dispersions of tacrolimus that exhibited higher dissolution than raw drug. Dissolution rate and stability are affected by the type of the polymer.
Collapse
|
23
|
Reyes FA, Mendiola JA, Suárez-Alvarez S, Ibañez E, del Valle JM. Adsorbent-assisted supercritical CO2 extraction of carotenoids from Neochloris oleoabundans paste. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Torres A, Romero J, Macan A, Guarda A, Galotto MJ. Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2013.10.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Ozdemir E, Sendemir-Urkmez A, Yesil-Celiktas O. Supercritical CO2 processing of a chitosan-based scaffold: Can implantation of osteoblastic cells be enhanced? J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 2012; 18:22-38. [DOI: 10.3109/10837450.2012.726998] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
|
28
|
Comin LM, Temelli F, Saldaña MD. Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2012.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 2011; 9:1510-1533. [PMID: 22131955 PMCID: PMC3225932 DOI: 10.3390/md9091510] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/28/2011] [Accepted: 08/31/2011] [Indexed: 12/15/2022] Open
Abstract
Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO2 leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics.
Collapse
|