1
|
Anguy Y, Haurat M, Dumon M. The Quest for Contrast in Digital Images of Micro/Nano Structured Polymer Blends Before and After CO 2 Foaming: Impact of Block Copolymer Content and Size Upon Acrylic Cellular Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405730. [PMID: 39711278 PMCID: PMC11798362 DOI: 10.1002/smll.202405730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Indexed: 12/24/2024]
Abstract
This work addresses the structural quantification of multiphase materials, here nanostructured polymer solid precursors and their micro/nano sized foamed counterparts. It is based on a strategy of contrast/edge enhancement, locally adaptive to image data in digital images of materials. The method allows to binarize straightforwardly the structures (the phases) in TEM and SEM images after edge identification, edge choice, and image virtual reconstruction. A detailed insight is brought into one-step batch supercritical CO2 foaming of acrylic amorphous PMMA (polymethyl methacrylate) polymers, aided by the nanostructuration of block copolymers (BCP), here MAM (butyl acrylate center block methyl acrylate side blocks). The foaming conditions, i.e., pressure drop rate (PDR) and saturation temperature required for an actual one-step procedure are specified and clarified, whereas previous works, dealing with "one-step procedures", are probably incurring in a two-step procedure. The roles of the BCP content (and size) and saturation temperature are carefully analyzed and further clarified, more comprehensively than in previous literature. Thanks to the analysis of size distributions of foams and foam blend precursors (0.25, 0.5, 10 wt% MAM), bi modality of 10 wt% foams is for example revealed. A discussion of kinetics effects, i.e., evolutions of the effective sample temperature Tef(t), and the effective glass transition temperature Tg, ef(t). provides a new insight of "pseudo" one-step VS "real" one-step batch foaming.
Collapse
Affiliation(s)
- Yannick Anguy
- UMR CNRS 5295 laboratoire I2MUniversité de BordeauxTalenceF‐33405France
| | - Margaux Haurat
- UMR CNRS 5629, laboratoire LCPOUniversité de BordeauxPessacF‐33600France
| | - Michel Dumon
- UMR CNRS 5629, laboratoire LCPOUniversité de BordeauxPessacF‐33600France
| |
Collapse
|
2
|
TRANSFORMATION OF TPU ELASTOMERS INTO TPU FOAMS USING SUPERCRITICAL CO2. A NEW REPROCESSING APPROACH. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Supercritical CO2-assisted Impregnation/Deposition of Polymeric Materials With Pharmaceutical, Nutraceutical, and Biomedical Applications: A Review (2015-2021). J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Supercritical CO2-assisted impregnation of polylactic acid films with R-carvone: Effect of processing on loading, mass transfer kinetics, and final properties. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Structural Modification of Polymers Functionalized with Mango Leaf Extract by Supercritical Impregnation: Approaching of Further Food and Biomedical Applications. Polymers (Basel) 2022; 14:polym14122413. [PMID: 35745986 PMCID: PMC9228015 DOI: 10.3390/polym14122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Identifying new polymers from natural resources that can be effectively functionalized can have a substantial impact on biomedical devices and food preservation fields. Some of these polymers would be made of biodegradable, renewable and compostable materials, and present the kind of porosity required to effectively carry active compounds that confer on them the desired properties for their intended applications. Some natural extracts, such as mango leaf extract, have been proven to have high levels of antioxidant, antimicrobial or anti-inflammatory properties, making them good candidates for controlled-release applications. This work intends to investigate the supercritical impregnation of different types of polymers (ABS, PETG, TPU, PC and PCL) with mango leaf extract. The influence of temperature and pressure on the polymers’ structure (swelling and foaming processes) and their different behaviors have been analyzed. Thus, TPU and PC experience minimal structural modifications, while PETG, PCL and ABS, on the other hand, suffer quite significant structural changes. TPU and PETG were selected as the representative polymers for each one of these behaviors to delve into mango leaf extract impregnation processes. The bioactive capacity of the extract is present in either impregnated polymer, with 25.7% antioxidant activity by TPU processed at 35 °C and 100 bar and 32.9% antioxidant activity by PETG impregnated at 75 °C and 400 bar.
Collapse
|
6
|
Modeling and Experiment for the Diffusion Coefficient of Subcritical Carbon Dioxide in Poly(methyl methacrylate) to Predict Gas Sorption and Desorption. Polymers (Basel) 2022; 14:polym14030596. [PMID: 35160585 PMCID: PMC8838939 DOI: 10.3390/polym14030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Several researchers have investigated the phenomenon of polymer–gas mixtures, and a few have proposed diffusion coefficient values instead of a diffusion coefficient model. There is a paucity of studies focused on the continuous change in the diffusion coefficient corresponding to the overall pressure and temperature range of the mixture. In this study, the gas sorption and desorption experiments of poly(methyl methacrylate) (PMMA) were conducted via solid-state batch foaming, and the weight change was measured using the gravimetric method with a magnetic balance. The control parameters were temperature, which ranged from 290 to 370 K, and pressure, which ranged from 2 to 5 MPa in the subcritical regime. Based on the experimental data, the diffusion coefficient of the PMMA was calculated using Fick’s law. After calculating the diffusion coefficient in the range of the experiment, the diffusion coefficient model was employed using the least-squares method. Subsequently, the model was validated by comparing the obtained results with those in the literature, and the overall trend was found to be consistent. Therefore, it was confirmed that there were slight differences between the diffusion coefficient obtained using only Fick’s equation and the value using by a different method.
Collapse
|
7
|
Haurat M, Tassaing T, Dumon M. FTIR in situ measurement of swelling and CO2 sorption in acrylic polymers at high CO2 pressures. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Mass Transfer and Optical Properties of Active PET/PP Food-Grade Films Impregnated with Olive Leaf Extract. Polymers (Basel) 2021; 14:polym14010084. [PMID: 35012107 PMCID: PMC8747531 DOI: 10.3390/polym14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.06% between the CIELAB colour parameters and the amount of the OLE impregnated in the film was obtained which suggests that colour determination can be used as a rapid, non-destructive technique to estimate the OLE loading in the impregnated matrices. The UV barrier and water permeability properties of the films were not significantly modified by the incorporation of OLE. The migration of OLE into a 50% (v/v) ethanol food simulant demonstrated faster release of OLE from the PP surface than from the PET surface which may be due to the different interactions between OLE and each polymer.
Collapse
|
9
|
Kolesnikov AL, Budkov YA, Gor GY. Models of adsorption-induced deformation: ordered materials and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:063002. [PMID: 34666316 DOI: 10.1088/1361-648x/ac3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Adsorption-induced deformation is a change in geometrical dimensions of an adsorbent material caused by gas or liquid adsorption on its surface. This phenomenon is universal and sensitive to adsorbent properties, which makes its prediction a challenging task. However, the pure academic interest is complemented by its importance in a number of engineering applications with porous materials characterization among them. Similar to classical adsorption-based characterization methods, the deformation-based ones rely on the quality of the underlying theoretical framework. This fact stimulates the recent development of qualitative and quantitative models toward the more detailed description of a solid material, e.g. account of non-convex and corrugated pores, calculations of adsorption stress in realistic three-dimension solid structures, the extension of the existing models to new geometries, etc. The present review focuses on the theoretical description of adsorption-induced deformation in micro and mesoporous materials. We are aiming to cover recent theoretical works describing the deformation of both ordered and disordered porous bodies.
Collapse
Affiliation(s)
- A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| | - Yu A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russia
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St. 1, 153045 Ivanovo, Russia
| | - G Y Gor
- Otto H. York Department Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States of America
| |
Collapse
|
10
|
Fast and Efficient Removal of Uranium onto a Magnetic Hydroxyapatite Composite: Mechanism and Process Evaluation. Processes (Basel) 2021. [DOI: 10.3390/pr9111927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The exploration and rational design of easily separable and highly efficient sorbents with satisfactory capability of extracting radioactive uranium (U)-containing compound(s) are of paramount significance. In this study, a novel magnetic hydroxyapatite (HAP) composite (HAP@ CoFe2O4), which was coupled with cobalt ferrite (CoFe2O4), was rationally designed for uranium(VI) removal through a facile hydrothermal process. The U(VI) ions were rapidly removed using HAP@ CoFe2O4 within a short time (i.e., 10 min), and a maximum U(VI) removal efficiency of 93.7% was achieved. The maximum adsorption capacity (Qmax) of the HAP@CoFe2O4 was 338 mg/g, which demonstrated the potential of as-prepared HAP@CoFe2O4 in the purification of U(VI) ions from nuclear effluents. Autunite [Ca(UO2)2(PO4)2(H2O)6] was the main crystalline phase to retain uranium, wherein U(VI) was effectively extracted and immobilized in terms of a relatively stable mineral. Furthermore, the reacted HAP@CoFe2O4 can be magnetically recycled. The results of this study reveal that the suggested process using HAP@CoFe2O4 is a promising approach for the removal and immobilization of U(VI) released from nuclear effluents.
Collapse
|
11
|
Kiran E, Sarver JA, Hassler JC. Solubility and Diffusivity of CO2 and N2 in Polymers and Polymer Swelling, Glass Transition, Melting, and Crystallization at High Pressure. A Critical Review and Perspectives on Experimental Methods, Data, and Modeling. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Verano Naranjo L, Cejudo Bastante C, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa Fernández EJ. Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers (Basel) 2021; 13:polym13121982. [PMID: 34204192 PMCID: PMC8235655 DOI: 10.3390/polym13121982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ketoprofen (KET) is an anti-inflammatory drug often used in medicine due to its analgesic and antipyretic effects. If it is administered in a controlled form by means of different dosing devices, it acts throughout the patient’s recovery period improving its efficacy. This study intends to support the use of supercritical solvent impregnation (SSI) as an efficient technique to develop polylactic acid (PLA) functionalized with ketoprofen, for use as controlled drug release devices. For this purpose, firstly, the influence of different SSI variables on the desirable swelling of the polymer structure, while avoiding their foaming, were evaluated. Then, the resulting ketoprofen loading was evaluated under different pressure/temperature conditions. It was generally found that as pressure and temperature are higher, the drug impregnation loads also increase. The maximum impregnation loads (at about 9% KET/PLA) were obtained at 200 bar and 75 °C. In vitro drug release tests of the impregnated compound were also carried out, and it was found that drug release profiles were also dependent on the specific pressure and temperature conditions used for the impregnation of each polymer filament.
Collapse
|
13
|
Coutinho IT, Maia-Obi LP, Champeau M. Aspirin-Loaded Polymeric Films for Drug Delivery Systems: Comparison between Soaking and Supercritical CO 2 Impregnation. Pharmaceutics 2021; 13:824. [PMID: 34199551 PMCID: PMC8229088 DOI: 10.3390/pharmaceutics13060824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric implants loaded with drugs can overcome the disadvantages of oral or injection drug administration and deliver the drug locally. Several methods can load drugs into polymers. Herein, soaking and supercritical CO2 (scCO2) impregnation methods were employed to load aspirin into poly(l-lactic acid) (PLLA) and linear low-density polyethylene (LLDPE). Higher drug loadings (DL) were achieved with scCO2 impregnation compared to soaking and in a shorter time (3.4 ± 0.8 vs. 1.3 ± 0.4% for PLLA; and 0.4 ± 0.5 vs. 0.6 ± 0.5% for LLDPE), due to the higher swelling capacity of CO2. The higher affinity of aspirin explained the higher DL in PLLA than in LLDPE. Residual solvent was detected in LLDPE prepared by soaking, but within the FDA concentration limits. The solvents used in both methods acted as plasticizers and increased PLLA crystallinity. PLLA impregnated with aspirin exhibited faster hydrolysis in vitro due to the catalytic effect of aspirin. Finally, PLLA impregnated by soaking showed a burst release because of aspirin crystals on the PLLA surface, and released 100% of aspirin within 60 days, whereas the PLLA prepared with scCO2 released 60% after 74 days by diffusion and PLLA erosion. Hence, the scCO2 impregnation method is adequate for higher aspirin loadings and prolonged drug release.
Collapse
Affiliation(s)
| | | | - Mathilde Champeau
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo Andre 09210-580, Brazil; (I.T.C.); (L.P.M.-O.)
| |
Collapse
|
14
|
Rostamitabar M, Abdelgawad AM, Jockenhoevel S, Ghazanfari S. Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromol Biosci 2021; 21:e2100021. [PMID: 33951278 DOI: 10.1002/mabi.202100021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Drug-eluting medical textiles have recently gained great attention to be used in different applications due to their cost effectiveness and unique physical and chemical properties. Using various fiber production and textile fabrication technologies, fibrous constructs with the required properties for the target drug delivery systems can be designed and fabricated. This review summarizes the current advances in the fabrication of drug-eluting medical textiles. Different fiber production methods such as melt-, wet-, and electro-spinning, and textile fabrication techniques such as knitting and weaving are explained. Moreover, various loading processes of bioactive agents to obtain drug-loaded fibrous structures with required physicochemical and morphological properties, drug delivery mechanisms, and drug release kinetics are discussed. Finally, the current applications of drug-eluting fibrous systems in wound care, tissue engineering, and transdermal drug delivery are highlighted.
Collapse
Affiliation(s)
- Matin Rostamitabar
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Abdelrahman M Abdelgawad
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen, 6167 RD, The Netherlands.,Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
15
|
Trindade Coutinho I, Champeau M. Synergistic effects in the simultaneous supercritical CO2 impregnation of two compounds into poly(L- lactic acid) and polyethylene. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Haurat M, Dumon M. Amorphous Polymers' Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO 2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes. Molecules 2020; 25:E5320. [PMID: 33202668 PMCID: PMC7696767 DOI: 10.3390/molecules25225320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Abstract
Organic polymers can be made porous via continuous or discontinuous expansion processes in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters: (i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper. The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch foaming) foaming processes in scCO2, will be discussed in this article; especially for micro or nano cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., ρ < 100 kg·m-3) and cell size (e.g., average pore diameter ϕaveragepores < 100 nm). Then a particular system where small "objects" (coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in poly(methyl methacrylate) (PMMA) will be presented. Such "additives", considered as foaming aids, are aimed at "regulating" the foaming and lowering the pore size and/or density of PMMA based foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend, via a quasi one-step batch foaming, a "porous to nonporous" transition is observed in thick samples. A lower limit of pore size (around 50 nm) seems to arise.
Collapse
Affiliation(s)
- Margaux Haurat
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Bordeaux INP/ENSCBP, University Bordeaux, CNRS, 16 Avenue Pey-Berland, CEDEX, F-33607 Pessac, France
| | - Michel Dumon
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Bordeaux INP/ENSCBP, University Bordeaux, CNRS, 16 Avenue Pey-Berland, CEDEX, F-33607 Pessac, France
| |
Collapse
|
17
|
Shi Q, Su M, Yuvaraja G, Tang J, Kong L, Chen D. Development of highly efficient bundle-like hydroxyapatite towards abatement of aqueous U(VI) ions: Mechanism and economic assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122550. [PMID: 32299040 DOI: 10.1016/j.jhazmat.2020.122550] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
The exploration of emergency materials with ultra-fast adsorption rate and great adsorption capability of released U(VI) ions is essentially urgent. The present work successfully fabricated bundle-like hydroxyapatite (B-HAP) microstructures which composed of numerous nanorods by employing a facile and green method. The B-HAP was applied to treat the U(VI) containing wastewater. The abatement of U(VI) by B-HAP was very rapid and the saturated adsorption capacity was superior; over 96.7 % of U(VI) was abated within 5 min, and the maximum adsorption capacity was as high as to 1305 mg/g, signifying the feasibility and effectiveness of this B-HAP in the treatment of uranium-contaminated wastewater due to nuclear accidents. It is worthy to note that other ions in solution exhibited relatively low interference on its performance, indicating that B-HAP has great application potential to capture U(VI) from radioactive-contaminated wastewater as well. The U(VI) removal mechanism by B-HAP was confirmed with results from XRD, FT-IR and XPS. Chernikovite [H2(UO2)2(PO4)2·8H2O] was newly formed after U(VI) abatement by B-HAP. Economic assessment suggested B-HAP and its application on U(VI) abatement were cost-effective. With characteristics of high adsorption rate, large capacity, and strong antijamming ability, B-HAP has great application potential as an emergency treatment material for nuclear accidents.
Collapse
Affiliation(s)
- Qingpu Shi
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Gutha Yuvaraja
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jinfeng Tang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Stelitano S, Lazzaroli V, Conte G, Pingitore V, Policicchio A, Agostino RG. Assessment of poly(L‐lactide) as an environmentally benign
CO
2
capture and storage adsorbent. J Appl Polym Sci 2020. [DOI: 10.1002/app.49587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sara Stelitano
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
- RINA Consulting‐CSM S.p.A. Zona Industriale Lamezia Terme Catanzaro Italy
| | - Victor Lazzaroli
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
| | - Giuseppe Conte
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
| | - Valentino Pingitore
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
| | - Alfonso Policicchio
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
- CNISM‐Consiglio Nazionale Interuniversitario di Scienze Fisiche della Materia Rome Italy
- CNR‐Nanotec Università della Calabria Arcavacata di Rende Cosenza Italy
| | - Raffaele Giuseppe Agostino
- Dipartimento di Fisica Università della Calabria Arcavacata di Rende Cosenza Italy
- CNISM‐Consiglio Nazionale Interuniversitario di Scienze Fisiche della Materia Rome Italy
- CNR‐Nanotec Università della Calabria Arcavacata di Rende Cosenza Italy
| |
Collapse
|
19
|
Ngo TT, Hoffman L, Hoople GD, Trevena W, Shakya U, Barr G. Surface morphology and drug loading characterization of 3D-printed methacrylate-based polymer facilitated by supercritical carbon dioxide. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Champeau M, Coutinho IT, Thomassin JM, Tassaing T, Jérôme C. Tuning the release profile of ketoprofen from poly(l-lactic acid) suture using supercritical CO2 impregnation process. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Ludescher L, Morak R, Balzer C, Waag AM, Braxmeier S, Putz F, Busch S, Gor GY, Neimark AV, Hüsing N, Reichenauer G, Paris O. In Situ Small-Angle Neutron Scattering Investigation of Adsorption-Induced Deformation in Silica with Hierarchical Porosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11590-11600. [PMID: 31379170 PMCID: PMC6733155 DOI: 10.1021/acs.langmuir.9b01375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Adsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data. Thus, SANS essentially measured the radial strain of the cylindrical mesopores including the volume changes of the mesopore walls due to micropore deformation. A H2O/D2O adsorbate with net zero coherent neutron scattering length density was employed in order to avoid apparent strain effects due to intensity changes during pore filling. In contrast to SANS, the strain isotherms obtained from in situ dilatometry result from a combination of axial and radial mesopore deformation together with micropore deformation. Strain data were quantitatively analyzed with a theoretical model for micro-/mesopore deformation by combining information from nitrogen and water adsorption isotherms to estimate the water-silica interaction. It was shown that in situ SANS provides complementary information to dilatometry and allows for a quantitative estimate of the elastic properties of the mesopore walls from water adsorption.
Collapse
Affiliation(s)
- Lukas Ludescher
- Institute
of Physics, Montanuniversitaet Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria
| | - Roland Morak
- Institute
of Physics, Montanuniversitaet Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria
| | - Christian Balzer
- Bavarian
Center for Applied Energy Research, Magdalene-Schoch-Str. 3, 97074 Wuerzburg, Germany
| | - Anna M. Waag
- Bavarian
Center for Applied Energy Research, Magdalene-Schoch-Str. 3, 97074 Wuerzburg, Germany
| | - Stephan Braxmeier
- Bavarian
Center for Applied Energy Research, Magdalene-Schoch-Str. 3, 97074 Wuerzburg, Germany
| | - Florian Putz
- Department
of Chemistry and Physics of Materials, Paris
Lodron University Salzburg, Jakob-Haringer Str. 2A, 5020 Salzburg, Austria
| | - Sebastian Busch
- German
Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Helmholtz-Zentrum Geesthacht
GmbH, Lichtenbergstrasse
1, 85747 Garching
bei München, Germany
| | - Gennady Y. Gor
- Otto
H. York Department of Chemical, and Materials Engineering, New Jersey Institute of Technology, University Heights, 07102 Newark, New Jersey, United States
| | - Alexander V. Neimark
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, 08854 Piscataway, New Jersey, United
States
| | - Nicola Hüsing
- Department
of Chemistry and Physics of Materials, Paris
Lodron University Salzburg, Jakob-Haringer Str. 2A, 5020 Salzburg, Austria
| | - Gudrun Reichenauer
- Bavarian
Center for Applied Energy Research, Magdalene-Schoch-Str. 3, 97074 Wuerzburg, Germany
| | - Oskar Paris
- Institute
of Physics, Montanuniversitaet Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria
| |
Collapse
|
22
|
Cejudo Bastante C, Cran M, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa E, Bigger S. Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Jiang X, Gao H, Zhang X, Pang J, Li Y, Li K, Wu Y, Li S, Zhu J, Wei Y, Jiang L. Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. Nat Commun 2018; 9:3799. [PMID: 30228346 PMCID: PMC6143602 DOI: 10.1038/s41467-018-06101-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Traditional optical organic vapor sensors with solvatochromic shift mechanisms have lower sensitivity due to weak intermolecular interactions. Here, we report a general strategy to prepare a higher sensitivity optical organic vapor sensor through polymeric swelling-induced variation of fluorescent intensity. We combine one-dimensional polymeric structures and aggregation-induced emission (AIE) molecules together to form a polymer/AIE microwires array as a sensor. The prepared sensors based on different commercial polymers can successfully classify and identify various organic vapors. Among them, the poly(vinyl butyral)/AIE microwires array can detect methanol vapor as low as 0.05% of its saturation vapor pressure. According to the theory of like dissolves like, we further fabricate a polymer/AIE microwires array derived from designable polyethersulfones, through regulating their side chains, to distinguish similar organic vapors of benzene and toluene. Both experimental and theoretical simulation results reveal that specific molecular interactions between the polyethersulfones and organic vapors can improve the specific recognition performance of the sensors.
Collapse
Affiliation(s)
- Xiangyu Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hanfei Gao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Jinhui Pang
- Engineering Research Center of Special Engineering Plastics Ministry of Education, Jilin University, 130012, Changchun, China
| | - Yunqi Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kan Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Shuzhou Li
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jia Zhu
- Department of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, China
| |
Collapse
|
24
|
Han Y, Zheng H, Jing X, Zheng L. Swelling behavior of polyester in supercritical carbon dioxide. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Marković D, Milovanović S, De Clerck K, Zizovic I, Stojanović D, Radetić M. Development of material with strong antimicrobial activity by high pressure CO2 impregnation of polyamide nanofibers with thymol. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Kolesnikov AL, Georgi N, Budkov YA, Möllmer J, Hofmann J, Adolphs J, Gläser R. Effects of Enhanced Flexibility and Pore Size Distribution on Adsorption-Induced Deformation of Mesoporous Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7575-7584. [PMID: 29792800 DOI: 10.1021/acs.langmuir.8b00591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we present a new model of adsorption-induced deformation of mesoporous solids. The model is based on a simplified version of local density functional theory in the framework of solvation free energy. Instead of density, which is treated as constant here, we used film thickness and pore radius as order parameters. This allows us to obtain a self-consistent system of equations describing simultaneously the processes of gas adsorption and adsorbent deformation, as well as conditions for capillary condensation and evaporation. In the limit of infinitely rigid pore walls, when the film becomes several monolayers thick, the model reduces to the well-known Derjaguin-Broekhoff-de Boer theory for pores with cylindrical geometry. We have investigated the effects of enhanced flexibility of the solid as well as the influence of pore size distribution on the adsorption/deformation process. The formulation of the theory allows to determine the average pore size and its width from the desorption branch of the strain isotherm only. The model reproduces the nonmonotonic behavior of the strain isotherm at low relative pressure. Furthermore, we discuss the effect of rigidity of the adsorbent on the pore size distribution, showing qualitatively different results of the adsorption isotherms for rigid and highly flexible materials, in particular, the shift of evaporation pressure to lower values and the absence of a limiting value of the loading at high relative pressure. We also discuss the results of the theory with respect to experimental data obtained from the literature.
Collapse
Affiliation(s)
- A L Kolesnikov
- Institut für Nichtklassische Chemie e.V. , Permoserstr. 15 , 04318 Leipzig , Germany
- Porotec GmbH , Niederhofheimer Str. 55A , 65719 Hofheim am Taunus , Germany
| | - N Georgi
- GMBU , Erich-Neuß-Weg 5 , 06120 Halle (Saale) , Germany
| | - Yu A Budkov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences , Akademicheskaya Street 1 , 153045 Ivanovo , Russia
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics , National Research University Higher School of Economics , 34 Tallinskaya Ulitsa , 123458 Moscow , Russia
| | - J Möllmer
- Institut für Nichtklassische Chemie e.V. , Permoserstr. 15 , 04318 Leipzig , Germany
| | - J Hofmann
- Institut für Nichtklassische Chemie e.V. , Permoserstr. 15 , 04318 Leipzig , Germany
| | - J Adolphs
- Porotec GmbH , Niederhofheimer Str. 55A , 65719 Hofheim am Taunus , Germany
| | - R Gläser
- Institut für Nichtklassische Chemie e.V. , Permoserstr. 15 , 04318 Leipzig , Germany
- Institut für Technische Chemie , Universität Leipzig , 04103 Leipzig , Germany
| |
Collapse
|
27
|
Supercritical CO 2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging. Food Res Int 2018; 107:486-495. [PMID: 29580511 DOI: 10.1016/j.foodres.2018.02.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/03/2018] [Accepted: 02/25/2018] [Indexed: 12/13/2022]
Abstract
Biodegradable polymers with antibacterial properties are highly desirable materials for active food packaging applications. Thymol, a dietary monoterpene phenol with a strong antibacterial activity is abundant in plants belonging to the genus Thymus. This study presents two approaches for supercritical CO2 impregnation of poly(lactic acid)(PLA)/poly(ε-caprolactone)(PCL) blended films to induce antibacterial properties of the material: (i) a batch impregnation process for loading pure thymol, and (ii) an integrated supercritical extraction-impregnation process for isolation of thyme extract and its incorporation into the films, operated in both batch or semi-continuous modes with supercritical solution circulation. The PCL content in films, impregnation time and CO2 flow regime were varied to maximize loading of the films with thymol or thyme extract with preserving films' structure and thermal stability. Representative film samples impregnated with thymol and thyme extract were tested against Gram (-) (Escherichia coli) and Gram(+) (Bacillus subtilis) model strains, by measuring their metabolic activity and re-cultivation after exposure to the films. The film containing thymol (35.8 wt%) showed a strong antibacterial activity leading to a total reduction of bacterial cell viability. Proposed processes enable fast, controlled and organic solvent-free fabrication of the PLA/PCL films containing natural antibacterial substances at moderately low temperature, with a compact structure and a good thermal stability, for potential use as active food packaging materials.
Collapse
|
28
|
Dubois J, Grau E, Tassaing T, Dumon M. On the CO 2 sorption and swelling of elastomers by supercritical CO 2 as studied by in situ high pressure FTIR microscopy. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Characterization and performance of reverse osmosis and nanofiltration membranes submitted to subcritical and supercritical CO 2. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Zaky M, Boyaval A, Grignard B, Méreau R, Detrembleur C, Jérôme C, Tassaing T. On the phase behaviour of oxetane-CO 2 and propargylic alcohols-CO 2 binary mixtures by in situ infrared micro-spectrometry. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Chen B, Wang J, Kong L, Mai X, Zheng N, Zhong Q, Liang J, Chen D. Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): Isotherm, kinetic and characterization studies. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Goñi ML, Gañán NA, Herrera JM, Strumia MC, Andreatta AE, Martini RE. Supercritical CO2 iof LDPE films with terpene ketones as biopesticides against corn weevil (Sitophilus zeamais). J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Novendra N, Hasirci N, Dilek C. Supercritical processing of CO 2 -philic polyhedral oligomeric silsesquioxane (POSS)-poly( l -lactic acid) composites. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Goñi ML, Gañán NA, Strumia MC, Martini RE. Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
|
36
|
Ben Said A, Guinot C, Ruiz JC, Grandjean A, Dole P, Joly C, Chalamet Y. Supercritical CO2 extraction of contaminants from polypropylene intended for food contact: Effects of contaminant molecular structure and processing parameters. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Guo WZ, Lu H, Li XK, Cao GP. Tungsten-promoted titania as solid acid for catalytic hydrolysis of waste bottle PET in supercritical CO2. RSC Adv 2016. [DOI: 10.1039/c6ra06298a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tungsten-promoted titania solid acid catalysts were synthesized by a hydrothermal method and used in the hydrolysis of waste bottle polyethylene terephthalate (PET) in supercritical CO2.
Collapse
Affiliation(s)
- Wen-Ze Guo
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Hui Lu
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xue-Kun Li
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Gui-Ping Cao
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
38
|
Supercritical CO2 antisolvent precipitation from biocompatible polymer solutions: A novel sustainable approach for biomaterials design and fabrication. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Drug loading of polymer implants by supercritical CO 2 assisted impregnation: A review. J Control Release 2015; 209:248-59. [DOI: 10.1016/j.jconrel.2015.05.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 01/24/2023]
|
40
|
Champeau M, Thomassin JM, Jérôme C, Tassaing T. In situ investigation of supercritical CO2 assisted impregnation of drugs into a polymer by high pressure FTIR micro-spectroscopy. Analyst 2015; 140:869-79. [DOI: 10.1039/c4an01130a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High pressure FTIR micro-spectroscopy to follow the kinetics of the drug loading during the supercritical CO2 assisted impregnation process.
Collapse
Affiliation(s)
- M. Champeau
- Institut des Sciences Moléculaires
- UMR 5255 CNRS
- Université de Bordeaux
- 33405 TALENCE Cedex
- France
| | - J.-M. Thomassin
- Center for Education and Research on Macromolecules
- University of Liège
- Department of Chemistry
- 4000 Liège
- Belgium
| | - C. Jérôme
- Center for Education and Research on Macromolecules
- University of Liège
- Department of Chemistry
- 4000 Liège
- Belgium
| | - T. Tassaing
- Institut des Sciences Moléculaires
- UMR 5255 CNRS
- Université de Bordeaux
- 33405 TALENCE Cedex
- France
| |
Collapse
|