1
|
Jin Q, Shen JS, Wu XR, Peng HZ, Fu ZH, Chen LQ, Zhao YL, Ye M, Luo XD. Antithrombotic macrocyclic sesquiterpene pyridine alkaloids from Tripterygium hypoglaucum. PHYTOCHEMISTRY 2025; 236:114516. [PMID: 40268176 DOI: 10.1016/j.phytochem.2025.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Six previously undescribed macrocyclic sesquiterpene pyridine alkaloids (SPAs) derivatives, named triptocumines A-F (1-6), as well as eighteen known analogs, were isolated from Tripterygium hypoglaucum. The structures were assigned based on analysis of spectroscopic data and electron circular dichroism calculations. Furthermore, compounds 1-6, 8, and 24 could effectively inhibit adenosine diphosphate-induced platelet aggregation, alleviate thrombosis and oxidative stress in zebrafish, reduce endothelin-1 level, protect endothelial cells from oxidative damage, and promote the formation of lumen structure.
Collapse
Affiliation(s)
- Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jia-Shan Shen
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650500, PR China; Southwest United Graduate School Kunming 650092, China
| | - Xian-Run Wu
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650500, PR China
| | - Hui-Zhen Peng
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650500, PR China
| | - Zi-Hao Fu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Li-Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650500, PR China.
| | - Min Ye
- Southwest United Graduate School Kunming 650092, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Southwest United Graduate School, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
2
|
Asokan K, Hussain AZ, Gattu RK, Ilangovan A. Minor limonoid constituents from Swietenia macrophylla by simultaneous isolation using supercritical fluid chromatography and their biological activities. RSC Adv 2024; 14:26637-26647. [PMID: 39175675 PMCID: PMC11339773 DOI: 10.1039/d4ra03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
This study reports simultaneous isolation of three new limonoids (1-3), six known regio isomers (6, 7, 9-12), and three more known limonoids (4, 5, 8) from Swietenia macrophylla (S. macrophylla) seeds. Structures of these compounds were determined via extensive study of their 1D/2D-NMR and mass spectral data. Known limonoids (4-12) were identified by comparing their physical and spectroscopic data with literature values. A novel environmentally friendly supercritical fluid chromatography (SFC) technique facilitated simultaneous and rapid separation of these compounds. The pharmacological activities of the new limonoids were investigated.
Collapse
Affiliation(s)
- Kathiravan Asokan
- Aragen Life Sciences Pvt Ltd Bengaluru-562106 India
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | - A Zahir Hussain
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | | | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| |
Collapse
|
3
|
Fu Q, Dong W, Ge D, Ke Y, Jin Y. Supercritical fluid chromatography based on reversed-phase/ ion chromatography mixed-mode stationary phase for separation of spirooxindole alkaloids. J Chromatogr A 2023; 1705:464163. [PMID: 37348226 DOI: 10.1016/j.chroma.2023.464163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
The present paper illustrates the versatility of the supercritical fluid chromatography (SFC) since, for the first time, four spirooxindole alkaloids (SOAs) including two pairs of isomers were separated by using two types of reversed-phase/ ion chromatography (RP/IC) mixed-mode stationary phases. Two mixed-mode stationary phases (C8SAX and C8SCX) was simultaneously provided dispersive and electrostatic interactions, which were suitable for the separation of such alkaloids. This study tried to provide an in-depth understanding of the SFC separation mechanism of the mixed-mode stationary phase through investigation of the impact of changes in mobile phase composition on alkaloids' retention behavior. On C8SAX, due to the strong electrostatic repulsion, there was a very narrow elution window of the alkaloids, of which behaviors were hardly affected by adding diethylamine in mobile phase. When adding formic acid or acidic ammonium formate, the prolonged retention time of alkaloids was presented because of the shielded effect of formate anions on the electrostatic repulsion. In particular, better peak shape and improved resolution were obtained by using acidic ammonium formate due to the deactivation of silanol groups by ammonium cations. On the other hand, both formic acid and acidic ammonium formate can strengthen the electrostatic attraction of C8SCX, causing difficult elution of the alkaloids. Ammonium cations from either the protonated diethylamine or the ionized ammonium formate, were considered as counter ions to effectively mask the electrostatic attraction of C8SCX, to significantly reduce the retention of alkaloids, but improve the resolution. Finally, utilizing two developed SFC methods, i.e., C8SAX with EtOH+ 10 mM acidic ammonium formate in CO2, or C8SCX with EtOH+0.1% diethylamine in CO2, the baseline separation of corynoxeine and isocorynoxeine, rhynchophylline and isorhynchophylline was achieved within 5 min.
Collapse
Affiliation(s)
- Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenwen Dong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dandan Ge
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
4
|
Ye LH, Dong X, Cao J. A highly sensitive method (supercritical fluid chromatography coupled with ion mobility mass spectrometry) for determination of multiple compounds in radix curcumae. Biomed Chromatogr 2023; 37:e5514. [PMID: 36181280 DOI: 10.1002/bmc.5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022]
Abstract
A highly sensitive method was developed for simultaneously separating and identifying multiple compounds in radix curcumae. The determination of these compounds was achieved by combining supercritical fluid chromatography with drift tube ion mobility quadrupole time-of-flight MS. Related parameters were optimized: the RX-SIL column was used as the stationary phase, methanol was selected as the organic modifier, back pressure was 120 bar, back temperature was 60°C, the mobile phase flow rate was 1.75 mL/min, the makeup solvent was 0.2% formic acid/methanol with a flow rate of 0.7 mL/min. Under optimal conditions, multipolar compounds were separated. Furthermore, these compounds were identified by the values of collision sectional areas. The established method was verified by related parameters and exhibited good linearity, sensitivity, precision and accuracy. It could be extended to analyze other curcuminoids and sesquiterpenoids in natural products.
Collapse
Affiliation(s)
- Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, P. R. China
| | - Xin Dong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
5
|
Qu B, Liu Y, Shen A, Guo Z, Yu L, Liu D, Huang F, Peng T, Liang X. Combining multidimensional chromatography-mass spectrometry and feature-based molecular networking methods for the systematic characterization of compounds in the supercritical fluid extract of Tripterygium wilfordii Hook F. Analyst 2022; 148:61-73. [PMID: 36441185 DOI: 10.1039/d2an01471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tripterygium wilfordii Hook F from the family Celastraceae is a traditional Chinese medicine (TCM) whose principal chemical constituents are terpenoids, including sesquiterpene alkaloids and diterpenoids, which have unique and diverse structures and remarkable biological activities. In order to advance pharmacological research and guide the preparation of monomer compounds derived from T. wilfordii, a systematic approach to efficiently discover new compounds or their derivatives is needed. Herein, compound separation and identification were performed by offline reversed-phase × supercritical fluid chromatography coupled mass spectrometry (RP × SFC-Q-TOF-MS/MS) and Global Natural Product Social (GNPS) molecular networking. The 2D chromatography system exhibited a high degree of orthogonality and significant peak capacity, and SFC has an advantage during the separation of sesquiterpene alkaloid isomers. Feature-based molecular networking offers the great advantage of quickly detecting and clustering unknown compounds, which greatly assists in intuitively judging the type of compound, and this networking technique has the potential to dramatically accelerate the identification and characterization of compounds from natural sources. A total of 324 compounds were identified and quantitated, including 284 alkaloids, 22 diterpenoids and 18 triterpenoids, which means that there are numerous potential new compounds with novel structures to be further explored. Overall, feature-based molecular networking provides an effective method for discovering and characterizing novel compounds and guides the separation and preparation of targeted natural products.
Collapse
Affiliation(s)
- Boquan Qu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Long Yu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dian Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Feifei Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Ting Peng
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
6
|
Comprehensive Evaluation of the Quality of Tripterygium Glycosides Tablets Based on Multi-Component Quantification Combined with an In Vitro Biological Assay. Molecules 2022; 27:molecules27165102. [PMID: 36014337 PMCID: PMC9416487 DOI: 10.3390/molecules27165102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Tripterygium glycosides tablets (TGTs) are widely used in clinical practice to treat rheumatoid arthritis and other autoimmune diseases, with significant beneficial effects but also high toxicity, necessitating rigorous quality evaluation and control. In current study, a rapid resolution liquid chromatography tandem electrospray ionization triple quadrupole mass spectrometry (RRLC–ESI–MS/MS) method was developed and validated for the quantitative analysis of 14 components of ten batches of TGTs produced by different manufacturers, including four diterpenoids, three triterpenoids, and seven sesquiterpene alkaloids. Meanwhile, the NO inhibition effects of these TGTs were evaluated in LPS-induced RAW264.7 cells for their downstream anti-inflammatory activities, as well as their cytotoxicity. The results indicate that the TGTs from different manufacturers showed poor quality consistency, as evidenced by large variations in chemical profiles and biological effects, which may increase the risks associated with clinical use. To improve the quality status of TGTs, it is crucial to identify indicator components whose characterization can accurately reflect the efficacy and toxicity of TGTs from which they were derived. Our study reveals that triptolide, triptoquinone B, celastrol, and demethylzelaysteral considerably contributed to the anti-inflammatory activity and/or cytotoxicity of TGTs, implying that they should be further investigated as candidate indicator components for TGT quality control.
Collapse
|
7
|
Advanced Development of Supercritical Fluid Chromatography in Herbal Medicine Analysis. Molecules 2022; 27:molecules27134159. [PMID: 35807405 PMCID: PMC9268462 DOI: 10.3390/molecules27134159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
The greatest challenge in the analysis of herbal components lies in their variety and complexity. Therefore, efficient analytical tools for the separation and qualitative and quantitative analysis of multi-components are essential. In recent years, various emerging analytical techniques have offered significant support for complicated component analysis, with breakthroughs in selectivity, sensitivity, and rapid analysis. Among these techniques, supercritical fluid chromatography (SFC) has attracted much attention because of its high column efficiency and environmental protection. SFC can be used to analyze a wide range of compounds, including non-polar and polar compounds, making it a prominent analytical platform. The applicability of SFC for the separation and determination of natural products in herbal medicines is overviewed in this article. The range of applications was expanded through the selection and optimization of stationary phases and mobile phases. We also focus on the two-dimensional SFC analysis. This paper provides new insight into SFC method development for herbal medicine analysis.
Collapse
|
8
|
Xun G, Tian Y, Gao Y, Zhang J, Liu X, Sun S, Qian Q, Liu F, Wang Q, Wang X. Identification and comparison of compounds in commercial Tripterygium wilfordii genus preparations with HPLC-QTOF/MS based on molecular networking and multivariate statistical analysis. J Pharm Biomed Anal 2022; 216:114811. [DOI: 10.1016/j.jpba.2022.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
9
|
Sharma T, Sharma P, Chandel P, Singh S, Sharma N, Naved T, Bhatia S, Al-Harrasi A, Bungau S, Behl T. Circumstantial Insights into the Potential of Traditional Chinese Medicinal Plants as a Therapeutic Approach in Rheumatoid Arthritis. Curr Pharm Des 2022; 28:2140-2149. [PMID: 35331092 DOI: 10.2174/1381612828666220324124720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The advanced era has invited a plethora of chronic and autoimmune infirmities unmistakably dominated by rheumatoid arthritis, occurring because of the equivocal causes, including ecological factors, genetic variations, etc. Unfortunately, it is winning pretty much in every stratum of the society in undefined age group of the population. Engineered drugs are accessible for the treatment; however, they do experience adverse effects as the treatment requires a prolonged duration worsened by noncompliance. To overwhelm it, certain pharmacological and molecular pathways are explored in the wake of Chinese herbs that prompted the prevention of this deteriorating autoimmune disease. The alcoholic extracts and decoctions are procured from Chinese herbs, such as Paeonia lactiflora, Glycyrrhiza uralensis, Tripterygium wilfordii, etc., which have been proved to manifest constructive pharmacological actions. The activities that were exhibited by extracts are significantly innocuous, non- toxic and potent to fix the affliction in contrast with the chemosynthetic drugs. Therefore, these Chinese herbs bring forth the potent anti-inflammatory, immune suppressing, anti-nociceptive, anti-neovascularizing, free radical scavenging activities and various other benefits to withstand several pathological events that usually endure the infirmity. It can be abridged that Chinese herbs possess assorted and selective therapeutic properties with profound safety and viability to treat this rheumatic disorder. Thus, this review aims to shed a light naturally originated treatment that is pertinent to provide invulnerable therapy exonerating from adverse effects, by restraining the occurrences of joint deformities, production of auto-antibodies, and inflammation.
Collapse
Affiliation(s)
- Twinkle Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Parth Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Ganzera M, Zwerger M. Analysis of natural products by SFC – Applications from 2015 to 2021. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Dai Z, Jiang D, Dai Y, Han R, Fu Q, Jin Y, Liang X. Separation and characterization of phenylamides from Piper kadsura using preparative supercritical fluid chromatography and ultra-high-performance supercritical fluid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:3530-3539. [PMID: 34342132 DOI: 10.1002/jssc.202100422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
A preparative supercritical fluid chromatography method for the separation of Piper kadsura obtained five phenylamide compounds, which had the same structural skeleton, but changed in the number and position of methoxyl substituents. To improve the separation selectivity of these structural analogues, silica, phenyl, and chiral stationary phases were screened. Only through the combination of Chiral C and phenyl columns could the separation of the five phenylamides be solved. The two-step strategy using preparative supercritical fluid chromatography presented good orthogonality that ensured the purity of the phenylamides. Then, an ultra-high-performance supercritical fluid chromatography hyphened tandem mass spectrometry method was developed, and the fragmentation pattern of phenylamides was summarized. It mainly cleaved in the amide bond to produce the fragment ion, which could help to judge the substituent positions. Twenty-eight possible molecular weights of hydroxyl and methoxyl substituted phenylamides were calculated and screened. Nine compounds were extracted in three [M + H]+ ions at m/z 284.13, 314.13, and 344.13, including five purified compounds and the other four positional or trans-cis phenylamide isomers in low content. The methods developed in this research were useful in the separation and characterization of phenylamide analogues.
Collapse
Affiliation(s)
- Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Rongrong Han
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China.,Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China
| |
Collapse
|
12
|
Huang Y, Wang T, Jiang Z. Fast analysis of alkaloids from different parts of
Mahonia bealei
(Fort.) Carr. studied for their anti‐Alzheimer's activity using supercritical fluid chromatography. J Sep Sci 2021; 44:2006-2014. [DOI: 10.1002/jssc.202001079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P.R. China
- Shenzhen Institute for Drug Control Shenzhen 518057 P.R. China
| | - Tiejie Wang
- Shenzhen Institute for Drug Control Shenzhen 518057 P.R. China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis College of Pharmacy Jinan University Guangzhou Guangdong 510632 P.R. China
| |
Collapse
|
13
|
Yousefi M, Rahimi-Nasrabadi M, Mirsadeghi S, Pourmortazavi SM. Supercritical Fluid Extraction of Pesticides and Insecticides from Food Samples and Plant Materials. Crit Rev Anal Chem 2020; 51:482-501. [PMID: 32295402 DOI: 10.1080/10408347.2020.1743965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The principal intention of this study is presenting the attempts carried out for extracting, separating, and determining of the pesticide and insecticide residues existing in food and plant samples. In this regard, a set of content, including the explanations about the supercritical fluid extraction (SFE), supercritical fluid chromatography, and various types of pesticides are indicated. Besides, the parameters affecting the pesticides extraction composed of temperature, pressure, modifier, drying agent, and so on are discussed. Also, examples of insecticides extraction by SFE technique as an important subset of pesticides are indicated. Along with these items, some interesting works, concerning the innovations implemented in the field of SFE of pesticide and insecticide residues from foodstuff and plants are depicted.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | | |
Collapse
|
14
|
Zhao WJ, Chen XY, Liu YQ, Li P, Li HJ. Liquid chromatographic separation of alkaloids in herbal medicines: Current status and perspectives. J Sep Sci 2020; 43:1755-1772. [PMID: 32160388 DOI: 10.1002/jssc.202000081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Alkaloids are a widespread group of basic compounds in herbal medicines and have attracted great interest due to various pharmaceutical activities and desirable druggability. Their distinctive structures make chromatographic separation fairly difficult. Peak tailing, poor resolution, and inferior column-to-column reproducibility are common obstacles to overcome. In order to provide a valuable reference, the methodologies and/or strategies on liquid chromatographic separation of alkaloids in herbal medicines proposed from 2012 to 2019 are thoroughly summarized.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Xu-Yan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu-Qian Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
15
|
Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: Review and discussion. J Chromatogr A 2020; 1614:460582. [DOI: 10.1016/j.chroma.2019.460582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/29/2023]
|
16
|
|
17
|
He PX, Zhang Y, Zhou Y, Li GH, Zhang JW, Feng XS. Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012-2018. Analyst 2019; 144:5324-5352. [PMID: 31348475 DOI: 10.1039/c9an00826h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medicinal plants with complex matrices are endowed with a wide scope of biological activities. The separation, quantification, characterization and purification of bioactive components from herbal medicine extracts have always challenged analysts. Fortunately, the advancement of various emerging techniques has provided potent support for improving the method selectivity, sensitivity and run speeds in medicinal plant analyses. In recent years, the advent of new-generation supercritical fluid chromatography (SFC) instruments and a wide diversity of column chemistries, coupled with the intrinsic technical features of SFC, have made it an alternative and prominent analytical platform in the medicinal plant research area. This work aims to give a comprehensive overview of the fundamentals, technical advancement and investigating parameters of SFC in combination with three prevalent detectors. Moreover, the latest research progress of SFC applications in medicinal plant analyses is illuminated, with focus on herbal medicine-related SFC papers on the analytical and preparative scale that were published during the period of 2012 to December 2018. The most relevant applications were classified based on the constituents to be analysed. As for the respective research cases, analytical protocols and data processing strategies were provided, along with the indicated restrictions or superiority of the method; thus, the current status of SFC in medicinal plant analysis was presented.
Collapse
Affiliation(s)
- Pei-Xia He
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Wang N, Jia Y, Li G, Wang J, Xue D, Liu X. An environmentally friendly and green method for separation and determination of eight phenolic acids in raw and processed Tussilagofarfara L. by ultra-high performance supercritical fluid chromatography. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1631179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Na Wang
- Department of Pathophysiology, College of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, PR China
| | - Yongming Jia
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Guangwei Li
- Department of Pathophysiology, College of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, PR China
| | - Jun Wang
- Department of Pathophysiology, College of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, PR China
| | - Di Xue
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Xuewei Liu
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| |
Collapse
|
19
|
Current trends in supercritical fluid chromatography. Anal Bioanal Chem 2018; 410:6441-6457. [DOI: 10.1007/s00216-018-1267-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
|
20
|
Separation of Piper kadsura Using Preparative Supercritical Fluid Chromatography Combined with Preparative Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3544-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Murauer A, Ganzera M. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography. J Chromatogr A 2018; 1554:117-122. [PMID: 29699870 PMCID: PMC6193530 DOI: 10.1016/j.chroma.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For the first time Supercritical Fluid Chromatography has been utilized for their separation. Six respective derivatives (dihydroquinidine, dihydroquinine, quinidine, quinine, cinchonine and cinchonidine) could be resolved in less than 7 min, and three of them quantified in crude plant extracts. The optimum stationary phase showed to be an Acquity UPC2 Torus DEA 1.7 μm column, the mobile phase comprised of CO2, acetonitrile, methanol and diethylamine. Method validation confirmed that the procedure is selective, accurate (recovery rates from 97.2% to 103.7%), precise (intra-day ≤2.2%, inter-day ≤3.0%) and linear (R2 ≥ 0.999); at 275 nm the observed detection limits were always below 2.5 μg/ml. In all of the samples analyzed cinchonine dominated (1.87%-2.30%), followed by quinine and cinchonidine. Their total content ranged from 4.75% to 5.20%. These values are in good agreement with published data, so that due to unmatched speed and environmental friendly character SFC is definitely an excellent alternative for the analysis of these important natural products.
Collapse
Affiliation(s)
- Adele Murauer
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal 2018; 147:65-80. [DOI: 10.1016/j.jpba.2017.08.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
|
23
|
Zhang X, Ji F, Li Y, He T, Han Y, Wang D, Lin Z, Chen S. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography. ANAL SCI 2018; 34:407-413. [PMID: 29643302 DOI: 10.2116/analsci.17p434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2023]
Abstract
In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO2) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, Rs = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, Rs = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.
Collapse
Affiliation(s)
| | - Feng Ji
- Analytical Center, Department of Analytical Instruments, Shimadzu (China) Co
| | - Yueqi Li
- Analytical Center, Department of Analytical Instruments, Shimadzu (China) Co
| | - Tian He
- School of Pharmaceutical Sciences, Peking University
| | - Ya Han
- School of Pharmaceutical Sciences, Peking University
| | - Daidong Wang
- School of Pharmaceutical Sciences, Peking University
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University
| |
Collapse
|
24
|
Yang J, Zhu L, Zhao Y, Xu Y, Sun Q, Liu S, Liu C, Ma B. Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal 2017; 140:384-391. [DOI: 10.1016/j.jpba.2017.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/06/2023]
|
26
|
Zhang L, Sun A, Li A, Kang J, Wang Y, Liu R. Isolation and purification of osthole and imperatorin from Fructus Cnidii by semi-preparative supercritical fluid chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1315723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Liheng Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Ailing Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aifeng Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Jingjing Kang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yancui Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Renmin Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
- School of Pharmacy, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Qin X, Wang Y, Li A, Sun A, Yu L, Liu R. Separation and purification of six components from the roots ofRheum officinaleBaill. by supercritical fluid chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1295389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiuxiu Qin
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yancui Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aifeng Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Ailing Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Linlin Yu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Renmin Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
- School of Pharmacy, Liaocheng University, Liaocheng, China
| |
Collapse
|