1
|
Assessing the Environmental and Economic Sustainability of Functional Food Ingredient Production Process. Processes (Basel) 2022. [DOI: 10.3390/pr10030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Development and application of novel technologies in food processing is vital for ensuring the availability of adequate, safe, and convenient food with the desired quality and functional properties. Environmental and economic sustainability of technologies is essential prior to their application in the food processing sector. The objective of this research is to determine the environmental and economic feasibility of ultrasound-assisted extraction (UAE) for recovering functional food ingredients from seaweed. Experimental data is used to conduct a life cycle assessment (LCA) to investigate the environmental performance with a functional unit (FU) of obtaining 1 g of extracted polyphenols, measured as gallic acid equivalents (mg GAE)/g seaweed. A life cycle impact assessment is performed with ReCiPe 2016 at midpoint. The cost of manufacturing (COM) of phenolic-rich extracts (as functional ingredient, bioactive, or nutraceutical) is estimated using time-driven activity-based costing (TDABC). The environmental profile findings show that across all categories, the UAE has considerably lower impacts than the conventional method, with electricity as the most important impact contributor, followed by solvent production. An economic assessment estimates the COM over a one-year period at a large scale using the UAE to be EUR 1,200,304, EUR 2,368,440, and EUR 4,623,290 for extraction vessel capacities of 0.05, 0.1, and 0.15 m3, respectively. Raw materials (including the type of raw material) and operational labour costs are the primary contributors to the COM. The findings thus present evidence to support the adoption of an environmentally and economically viable technology for functional ingredient production.
Collapse
|
2
|
Chañi-Paucar LO, Johner JCF, Zabot GL, Meireles MAA. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Essien SO, Udugama I, Young B, Baroutian S. Recovery of bioactives from kānuka leaves using subcritical water extraction: Techno-economic analysis, environmental impact assessment and technology readiness level. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Moraes DP, Machado ML, Farias CAA, Barin JS, Zabot GL, Lozano-Sánchez J, Ferreira DF, Vizzotto M, Leyva-Jimenez FJ, Da Silveira TL, Ries EF, Barcia MT. Effect of Microwave Hydrodiffusion and Gravity on the Extraction of Phenolic Compounds and Antioxidant Properties of Blackberries (Rubus spp.): Scale-Up Extraction. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02557-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Nguyen TT, Zhang W. Techno-economic feasibility analysis of microwave-assisted biorefinery of multiple products from Australian lobster shells. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Costa JAV, Freitas BCB, Moraes L, Zaparoli M, Morais MG. Progress in the physicochemical treatment of microalgae biomass for value-added product recovery. BIORESOURCE TECHNOLOGY 2020; 301:122727. [PMID: 31983577 DOI: 10.1016/j.biortech.2019.122727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Interest in microalgae-derived products is growing, mostly due to their unique characteristics and range of industrial applications. To obtain different products, one must employ specific pretreatments that retain the properties of the biologically active compounds extracted from microalgae biomass; thus, new extraction techniques require frequent upgrades. Due to increased interest in economically viable and ecologically friendly processes, new extraction methods that can be incorporated into microalgae biorefinery systems have become the main focus of research. Therefore, this review aims to address the potential applications, future prospects, and economic scenario of the new physicochemical treatments used in the extraction of bioactive microalgae compounds.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil.
| | - Bárbara Catarina Bastos Freitas
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Luiza Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Munise Zaparoli
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Michele Greque Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| |
Collapse
|
8
|
Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Rosero-Henao JC, Bueno BE, de Souza R, Ribeiro R, Lopes de Oliveira A, Gomide CA, Gomes TM, Tommaso G. Potential benefits of near critical and supercritical pre-treatment of lignocellulosic biomass towards anaerobic digestion. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:74-82. [PMID: 30409077 DOI: 10.1177/0734242x18806998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vegetable crop residues, such as sugarcane bagasse (SCB), despite their limited biodegradability, are potential materials for anaerobic processes because of their low cost, high availability, and sugar content. The difficulty of biodegrading this type of material is primarily related to its chemical composition and to the complex interactions between its compounds (cellulose, hemicelluloses, and lignin). Thus, the following supercritical and near critical carbon dioxide (CO2) pre-treatments were evaluated with and without the addition of sodium hydroxide (NaOH): (i) 40°C/70 kgf·cm-2; (ii) 60°C/200 kgf·cm-2; and (iii) 80°C/200 kgf·cm-2, aiming to enhance the anaerobic biodegradability of SCB. The methanogenic production of SCB increased in all cases in which the material was pre-treated, except the case in which NaOH was used together with a high temperature. The condition using CO2 at 60°C/200 kgf·cm-2 was highlighted with a lignin removal of 8.07% and an accumulated methane production of 0.6498 ± 0.014 LN (273.15K, 1.01325 × 105 Pa), 23.4% higher than the value obtained with the untreated material. This condition also showed the highest net energy at the energy balance that was calculated for comparison with the tested conditions. The results showed that pre-treatments with near critical and supercritical fluids have the potential to reduce structural obstacles of lignocellulosic materials and to enhance their anaerobic biodegradability.
Collapse
Affiliation(s)
- Jenny Carolina Rosero-Henao
- 1 Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Beatriz Egerland Bueno
- 1 Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Raquel de Souza
- 2 Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Rogers Ribeiro
- 1 Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Alessandra Lopes de Oliveira
- 1 Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Catarina Abdalla Gomide
- 3 Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Tamara Maria Gomes
- 4 Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| | - Giovana Tommaso
- 1 Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Brazil
| |
Collapse
|
10
|
da Fonseca Machado AP, Alves Rezende C, Alexandre Rodrigues R, Fernández Barbero G, de Tarso Vieira e Rosa P, Martínez J. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Luft L, Confortin TC, Todero I, Ugalde G, Zabot GL, Mazutti MA. Transformation of residual starch from brewer’s spent grain into fermentable sugars using supercritical technology. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zabot GL, Moraes MN, Meireles M. Process integration for producing tocotrienols-rich oil and bixin-rich extract from annatto seeds: A techno-economic approach. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Herrero M, Ibañez E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Green and Sustainable Solvents in Chemical Processes. Chem Rev 2018; 118:747-800. [DOI: 10.1021/acs.chemrev.7b00571] [Citation(s) in RCA: 897] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Coby J. Clarke
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Wei-Chien Tu
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Oliver Levers
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Andreas Bröhl
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Jason P. Hallett
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Obtaining fatty acids from Mortierella isabellina using supercritical carbon dioxide and compressed liquefied petroleum gas. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|