1
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Shakoor R, Hussain N, Younas S, Bilal M. Novel strategies for extraction, purification, processing, and stability improvement of bioactive molecules. J Basic Microbiol 2023; 63:276-291. [PMID: 36316223 DOI: 10.1002/jobm.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Bioactive molecules gain significance in pharmaceutical and nutraceutical industries for showcasing various beneficial biological properties including but not limited to anticancer, antimicrobial, antioxidant, antifungal, anti-inflammatory, cardioprotective, neuroprotective, and antidiabetic. However, the practice of using traditional approaches to produce bioactive molecules is gradually declining due to various limitations such as low product quality, high toxicity, low product yield, low efficiency, and product degradation. Thus, with the escalating demand for these bioactive molecules and active agents in food and other food-related industries, it has become a dire need for the scientific world to come up with novel approaches and strategies that cannot just improve the quality of these bioactives but also prepare them in a comparatively shorter time span. This review includes the latest approaches and techniques used either independently or in combinations for the extraction, purification, processing, and stability improvement of general bioactive molecules. Different parameters of these versatile techniques have been discussed with their effectiveness and work principles.
Collapse
Affiliation(s)
- Rafia Shakoor
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saima Younas
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
3
|
Sterchi R, Maeda N, Keller S, Zehnder B, Meier DM. In Situ Attenuated Total Reflection Infrared Spectroscopic Monitoring of Supercritical CO 2 Extraction for Green Process Applications. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Robert Sterchi
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences (ZHAW), Winterthur CH-8400, Switzerland
| | - Nobutaka Maeda
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences (ZHAW), Winterthur CH-8400, Switzerland
| | - Stefan Keller
- SITEC-Sieber Engineering AG, Aschbach 7, Maur CH-8124, Switzerland
| | - Beat Zehnder
- SITEC-Sieber Engineering AG, Aschbach 7, Maur CH-8124, Switzerland
| | - Daniel M. Meier
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences (ZHAW), Winterthur CH-8400, Switzerland
| |
Collapse
|
4
|
Marques SPD, Owen RW, da Silva AMA, Alves Neto ML, Trevisan MTS. QuEChERS extraction for quantitation of bitter acids and xanthohumol in hops by HPLC-UV. Food Chem 2022; 388:132964. [PMID: 35447586 DOI: 10.1016/j.foodchem.2022.132964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Abstract
We hypothesised that QuEChERS could be successfully applied to the extraction of bitter acids and xanthohumol from hops, which would be less time consuming, cheaper, and more eco-friendly by the severe reduction of solvent use. High performance liquid chromatography was used to separate the compounds after extraction and quantitation was evaluated against standard calibration curves for bitter acids prepared from an International calibration extract (ICE-4) and an authentic standard of xanthohumol. The standard QuEChERS method was compared to mini and micro-versions including clean-up and spiking procedures. The quantitative analyzes indicate the applicability of the QuEChERS method for the quantitation of bitter acids compared to Soxhlet extraction. The statistical data confirm reproducibility of the total alpha- and beta- acids measured by the standard method and the modified mini- and micro-QuEChERS procedures. Our hypothesis is supported by the data described and is consistent with other previous methods described in the literature.
Collapse
Affiliation(s)
- Samuel Pedro Dantas Marques
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Departamento de Química, Av. José de Freitas Queiroz, 5000, Quixadá, CE CEP: 63902-580, Brazil; Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| | - Robert Wyn Owen
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil
| | - Ana Maria Amaral da Silva
- Universidade Federal do Ceará, Departamento de Pós-Graduação em Química, Campus do Pici - Bloco 940 - Cx. Postal: 6021, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Manoel Lourenço Alves Neto
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará 60455-760, Brazil.
| | - Maria Teresa Salles Trevisan
- Programa de Pós-graduação em Química, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici - Bloco 935 superior - Laboratório de Produtos Naturais e Biotecnologia (LPNBio), CP: 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Nagybákay NE, Syrpas M, Vilimaitė V, Tamkutė L, Pukalskas A, Venskutonis PR, Kitrytė V. Optimized Supercritical CO 2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop ( Humulus lupulus L.) Variety Ella. Antioxidants (Basel) 2021; 10:antiox10060918. [PMID: 34204047 PMCID: PMC8228826 DOI: 10.3390/antiox10060918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.
Collapse
|
6
|
Uwineza PA, Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020; 25:molecules25173847. [PMID: 32847101 PMCID: PMC7504334 DOI: 10.3390/molecules25173847] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, recent advances in greener technology for extracting natural bioactive components from plant origin sources are discussed. Bioactive compounds of plant origin have been defined as natural chemical compounds present in small amounts in plants. Researchers have shown interest in extracting bioactive compounds because of their human health benefits and characteristics of being eco-friendly and generally recognized as safe. Various new extraction methods and conventional extraction methods have been developed, however, until now, no unique approach has been presented as a benchmark for extracting natural bioactive compounds from plants. The selectivity and productivity of traditional and modern extraction techniques generally depend on selecting the critical input parameters, knowing the nature of plant-based samples, the structure of bioactive compounds, and good scientific skills. This work aims to discuss the recent advances in supercritical fluid extraction techniques, especially supercritical carbon dioxide, along with the fundamental principles for extracting bioactive compounds from natural plant materials such as herbs, spices, aromatic and medicinal plants.
Collapse
|
7
|
Hampel U, Schubert M, Döß A, Sohr J, Vishwakarma V, Repke J, Gerke SJ, Leuner H, Rädle M, Kapoustina V, Schmitt L, Grünewald M, Brinkmann JH, Plate D, Kenig EY, Lutters N, Bolenz L, Buckmann F, Toye D, Arlt W, Linder T, Hoffmann R, Klein H, Rehfeldt S, Winkler T, Bart H, Wirz D, Schulz J, Scholl S, Augustin W, Jasch K, Schlüter F, Schwerdtfeger N, Jahnke S, Jupke A, Kabatnik C, Braeuer AS, D'Auria M, Runowski T, Casal MF, Becker K, David A, Górak A, Skiborowski M, Groß K, Qammar H. Recent Advances in Experimental Techniques for Flow and Mass Transfer Analyses in Thermal Separation Systems. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Uwe Hampel
- Helmholtz-Zentrum Dresden-Rossendorf Institut für Fluiddynamik Bautzner Landstraße 400 01328 Dresden Germany
- Technische Universität Dresden Institut für Energietechnik 01062 Dresden Germany
| | - Markus Schubert
- Helmholtz-Zentrum Dresden-Rossendorf Institut für Fluiddynamik Bautzner Landstraße 400 01328 Dresden Germany
| | - Alexander Döß
- Helmholtz-Zentrum Dresden-Rossendorf Institut für Fluiddynamik Bautzner Landstraße 400 01328 Dresden Germany
| | - Johanna Sohr
- Technische Universität Dresden Institut für Energietechnik 01062 Dresden Germany
| | - Vineet Vishwakarma
- Helmholtz-Zentrum Dresden-Rossendorf Institut für Fluiddynamik Bautzner Landstraße 400 01328 Dresden Germany
- Technische Universität Dresden Institut für Energietechnik 01062 Dresden Germany
| | - Jens‐Uwe Repke
- Technische Universität Berlin Institut für Prozess- und Verfahrenstechnik Straße des 17. Juni 135 10623 Berlin Germany
| | - Sören J. Gerke
- Technische Universität Berlin Institut für Prozess- und Verfahrenstechnik Straße des 17. Juni 135 10623 Berlin Germany
| | - Hannes Leuner
- Technische Universität Berlin Institut für Prozess- und Verfahrenstechnik Straße des 17. Juni 135 10623 Berlin Germany
| | - Matthias Rädle
- Hochschule Mannheim Center for Mass Spectrometry and Optical Spectroscopy John-Deere-Straße 81A 68163 Mannheim Germany
| | - Viktoria Kapoustina
- Hochschule Mannheim Center for Mass Spectrometry and Optical Spectroscopy John-Deere-Straße 81A 68163 Mannheim Germany
| | - Lucas Schmitt
- Hochschule Mannheim Center for Mass Spectrometry and Optical Spectroscopy John-Deere-Straße 81A 68163 Mannheim Germany
| | - Marcus Grünewald
- Ruhr-Universität Bochum Lehrstuhl für Fluidverfahrenstechnik Universitätsstraße 150 44801 Bochum Germany
| | - Jost H. Brinkmann
- Ruhr-Universität Bochum Lehrstuhl für Fluidverfahrenstechnik Universitätsstraße 150 44801 Bochum Germany
| | - Dominik Plate
- Ruhr-Universität Bochum Lehrstuhl für Fluidverfahrenstechnik Universitätsstraße 150 44801 Bochum Germany
| | - Eugeny Y. Kenig
- Universität Paderborn Fakultät für Maschinenbau, Lehrstuhl für Fluidverfahrenstechnik Pohlweg 55 33098 Paderborn Germany
| | - Nicole Lutters
- Universität Paderborn Fakultät für Maschinenbau, Lehrstuhl für Fluidverfahrenstechnik Pohlweg 55 33098 Paderborn Germany
| | - Lukas Bolenz
- Universität Paderborn Fakultät für Maschinenbau, Lehrstuhl für Fluidverfahrenstechnik Pohlweg 55 33098 Paderborn Germany
| | - Felix Buckmann
- Universität Paderborn Fakultät für Maschinenbau, Lehrstuhl für Fluidverfahrenstechnik Pohlweg 55 33098 Paderborn Germany
| | - Dominique Toye
- Universite de Liège Department of Chemical Engineering Allée du six Août, 17B 4000 Liège 1 Belgium
| | - Wolfgang Arlt
- Friedrich-Alexander-Universität Erlangen-Nürnberg Institute of Separation Science and Technology Egerlandstraße 3 91058 Erlangen Germany
| | - Thomas Linder
- Friedrich-Alexander-Universität Erlangen-Nürnberg Institute of Separation Science and Technology Egerlandstraße 3 91058 Erlangen Germany
| | - Rainer Hoffmann
- Linde Aktiengesellschaft Engineering Division Dr.-Carl-von-Linde-Straße 6–14 82049 Pullach bei München Germany
| | - Harald Klein
- Technical University of Munich Department of Mechanical Engineering, Institute of Plant and Process Technology Boltzmannstraße 15 85748 Garching Germany
| | - Sebastian Rehfeldt
- Technical University of Munich Department of Mechanical Engineering, Institute of Plant and Process Technology Boltzmannstraße 15 85748 Garching Germany
| | - Thomas Winkler
- Technical University of Munich Department of Mechanical Engineering, Institute of Plant and Process Technology Boltzmannstraße 15 85748 Garching Germany
| | - Hans‐Jörg Bart
- Technische Universität Kaiserslautern Lehrstuhl für Thermische Verfahrenstechnik PF 3049 67653 Kaiserslautern Germany
| | - Dominic Wirz
- Technische Universität Kaiserslautern Lehrstuhl für Thermische Verfahrenstechnik PF 3049 67653 Kaiserslautern Germany
| | - Jonas Schulz
- Technische Universität Kaiserslautern Lehrstuhl für Thermische Verfahrenstechnik PF 3049 67653 Kaiserslautern Germany
| | - Stephan Scholl
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Wolfgang Augustin
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Katharina Jasch
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Florian Schlüter
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Natalie Schwerdtfeger
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Stefan Jahnke
- Technische Universität Braunschweig Institute for Chemical and Thermal Process Engineering Langer Kamp 7 38106 Braunschweig Germany
| | - Andreas Jupke
- RWTH Aachen University Aachener Verfahrenstechnik, Fluidverfahrenstechnik Forckenbeckstraße 51 52074 Aachen Germany
| | - Christoph Kabatnik
- RWTH Aachen University Aachener Verfahrenstechnik, Fluidverfahrenstechnik Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Siegfried Braeuer
- Technische Universität Bergakademie Freiberg (TUBAF) Institute of Thermal-, Environmental and Resources' Process Engineering (ITUN) Leipziger Straße 28 09599 Freiberg Germany
| | - Mirko D'Auria
- Technische Universität Bergakademie Freiberg (TUBAF) Institute of Thermal-, Environmental and Resources' Process Engineering (ITUN) Leipziger Straße 28 09599 Freiberg Germany
| | - Thomas Runowski
- Bayer AG Engineering & Technology, Thermal Separation Technologies 51368 Leverkusen Germany
| | - Maria Francisco Casal
- Bayer AG Engineering & Technology, Thermal Separation Technologies 51368 Leverkusen Germany
| | - Karsten Becker
- Bayer AG Engineering & Technology, Thermal Separation Technologies 51368 Leverkusen Germany
| | - Anna‐Lena David
- Bayer AG Engineering & Technology, Thermal Separation Technologies 51368 Leverkusen Germany
| | - Andrzej Górak
- TU Dortmund University Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations Emil-Figge-Straße 70 44227 Dortmund Germany
| | - Mirko Skiborowski
- TU Dortmund University Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations Emil-Figge-Straße 70 44227 Dortmund Germany
| | - Kai Groß
- TU Dortmund University Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations Emil-Figge-Straße 70 44227 Dortmund Germany
| | - Hina Qammar
- TU Dortmund University Department of Biochemical and Chemical Engineering, Laboratory of Fluid Separations Emil-Figge-Straße 70 44227 Dortmund Germany
| |
Collapse
|
8
|
Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: modeling and optimization by response surface methodology. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|