1
|
Abd Elfatah AR, Hassan ME, Abdel-Mobdy YE, Abd El Fatah OM, Abdelrahim EA, Abdel-Wahhab MA. Phytochemicals in pomegranate peel extract attenuate oxidative damage in rats exposed to fipronil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106275. [PMID: 40015867 DOI: 10.1016/j.pestbp.2024.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Fipronil (FPN), a pesticide frequently used in veterinary medicine and agriculture, has been linked to adverse health consequences in non-target creatures. This study was conducted to determine the phytochemical and vitamin content of pomegranate peel ethanolic extract (PPE) and to assess its hepatoprotective impact in rats exposed to FPN insecticide. The phytochemicals were tested using LC-MS/MS, whilst the vitamins were evaluated using HPLC. Six groups of male albino rats were treated for three months, including the control group and those treated with PPE (400 mg/kg b.w.), FPN at low dosage (16.16 mg/kg b.w.), or high dose (48.5 mg/kg b.w.) alone or in combination with PPE. Blood and tissue samples were taken for various hematological, biochemical, and histopathological analyses. HPLC results revealed that PPE contains water and oil-soluble vitamins; also, LC-MS/MS identified 21 chemicals belonging to tannins, steroids, tannins, flavonoids, phenolics, alkaloids, terpenoids, and saponins. The biological study revealed that FPN caused dose-dependent changes in RBCs, WBCs, MCHC, PLT count, MCH, MCV, Hb, HCT, ALT, AST, ALP, Alb, TP, urea, uric acid, creatinine, Cho, Tri G, HDL, LDL, CAT, SOD, MDA, GST, testosterone levels, and histological changes in liver and kidney. PPE administration did not show any significant changes in all the tested parameters. Co-administration with FPN and PPE induced a significant improvement in all the tested parameters towards the control levels, owing to its strong antioxidant activity. Consequently, PPE should be considered a dietary supplement in areas with high levels of FPN exposure.
Collapse
Affiliation(s)
- Awad R Abd Elfatah
- Pesticides Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Marwa E Hassan
- Pesticides Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Yasmin E Abdel-Mobdy
- Entomology and Pesticide Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | | | - Emam A Abdelrahim
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Dept, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
2
|
de Oliveira IL, Domínguez-Rodríguez G, Montero L, Viganó J, Cifuentes A, Rostagno MA, Ibáñez E. Advanced Extraction Techniques Combined with Natural Deep Eutectic Solvents for Extracting Phenolic Compounds from Pomegranate ( Punica granatum L.) Peels. Int J Mol Sci 2024; 25:9992. [PMID: 39337480 PMCID: PMC11432524 DOI: 10.3390/ijms25189992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pomegranate (Punica granatum L.) peel is a potential source of bioactive phenolic compounds such as ellagic acid and α- and β-punicalagin. This work explores the efficiency of natural deep eutectic solvents combined with ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) for their extraction. Five NaDESs were evaluated by employing UAE (25 °C, for 50 min) to determine their total phenolic content (Folin-Ciocalteu assay) and ellagic acid and α- and β-punicalagin contents (high-performance liquid chromatography (HPLC-DAD)). The NaDES composed of choline chloride (ChCl) and glycerol (Gly) (1:2, molar ratio) was the most efficient in the UAE when compared with the rest of the NaDESs and water extracts. Therefore, ChCl:Gly was further evaluated using PLE at different temperatures (40, 80, 120 and 160 °C). The PLE-NaDES extract obtained at 80 °C for 20 min at 1500 psi exhibited the highest contents of ellagic acid and α- and β-punicalagin compared to the rest of the temperatures and PLE-water extracts obtained under the same extraction conditions. Combining UAE or PLE with a NaDES emerges as a sustainable alternative for extracting ellagic acid and α- and β-punicalagin from pomegranate peel.
Collapse
Affiliation(s)
- Isadora Lopes de Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, São Paulo 13083-871, Brazil;
| | - Gloria Domínguez-Rodríguez
- Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, Campus UAM Cantoblanco, 28049 Madrid, Spain; (L.M.); (A.C.); (E.I.)
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Lidia Montero
- Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, Campus UAM Cantoblanco, 28049 Madrid, Spain; (L.M.); (A.C.); (E.I.)
| | - Juliane Viganó
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil;
| | - Alejandro Cifuentes
- Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, Campus UAM Cantoblanco, 28049 Madrid, Spain; (L.M.); (A.C.); (E.I.)
| | - Mauricio Arial Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, São Paulo 13083-871, Brazil;
| | - Elena Ibáñez
- Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, Campus UAM Cantoblanco, 28049 Madrid, Spain; (L.M.); (A.C.); (E.I.)
| |
Collapse
|
3
|
Yue Q, Tian J, Dong L, Zhou L. Comparison of an Ultrasound-Assisted Aqueous Two-Phase System Extraction of Anthocyanins from Pomegranate Pomaces by Utilizing the Artificial Neural Network-Genetic Algorithm and Response Surface Methodology Models. Foods 2024; 13:199. [PMID: 38254500 PMCID: PMC11154380 DOI: 10.3390/foods13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
As a by-product of pomegranate processing, the recycling and reuse of pomegranate pomaces (PPs) were crucial to environmentally sustainable development. Ultrasound-assisted aqueous two-phase extraction (UA-ATPE) was applied to extract the anthocyanins (ACNs) from PPs in this study, and the central composite design response surface methodology (CCD-RSM) and artificial neural network-genetic algorithm (ANN-GA) models were utilized to optimize the extraction parameters and achieve the best yield. The results indicated that the ANN-GA model built for the ACN yield had a greater degree of fit and accuracy than the RSM model. The ideal model process parameters were optimized to have a liquid-solid ratio of 49.0 mL/g, an ethanol concentration of 28 g/100 g, an ultrasonic time of 27 min, and an ultrasonic power of 330 W, with a maximum value of 86.98% for the anticipated ACN yield. The experimental maximum value was 87.82%, which was within the 95% confidence interval. A total of six ACNs from PPs were identified by utilizing UHPLC-ESI-HRMS/MS, with the maximum content of cyanidin-3-O-glucoside being 57.01 ± 1.36 mg/g DW. Therefore, this study has positive significance for exploring the potential value of more by-products and obtaining good ecological and economic benefits in the future.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Ling Dong
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
4
|
Falcioni R, Moriwaki T, Gibin MS, Vollmann A, Pattaro MC, Giacomelli ME, Sato F, Nanni MR, Antunes WC. Classification and Prediction by Pigment Content in Lettuce ( Lactuca sativa L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2022; 11:3413. [PMID: 36559526 PMCID: PMC9783279 DOI: 10.3390/plants11243413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 05/14/2023]
Abstract
Green or purple lettuce varieties produce many secondary metabolites, such as chlorophylls, carotenoids, anthocyanins, flavonoids, and phenolic compounds, which is an emergent search in the field of biomolecule research. The main objective of this study was to use multivariate and machine learning algorithms on Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)-based spectra to classify, predict, and categorize chemometric attributes. The cluster heatmap showed the highest efficiency in grouping similar lettuce varieties based on pigment profiles. The relationship among pigments was more significant than the absolute contents. Other results allow classification based on ATR-FTIR fingerprints of inflections associated with structural and chemical components present in lettuce, obtaining high accuracy and precision (>97%) by using principal component analysis and discriminant analysis (PCA-LDA)-associated linear LDA and SVM machine learning algorithms. In addition, PLSR models were capable of predicting Chla, Chlb, Chla+b, Car, AnC, Flv, and Phe contents, with R2P and RPDP values considered very good (0.81−0.88) for Car, Anc, and Flv and excellent (0.91−0.93) for Phe. According to the RPDP metric, the models were considered excellent (>2.10) for all variables estimated. Thus, this research shows the potential of machine learning solutions for ATR-FTIR spectroscopy analysis to classify, estimate, and characterize the biomolecules associated with secondary metabolites in lettuce.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Alessandra Vollmann
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Marcos Rafael Nanni
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
5
|
Arun KB, Madhavan A, Anoopkumar AN, Surendhar A, Liz Kuriakose L, Tiwari A, Sirohi R, Kuddus M, Rebello S, Kumar Awasthi M, Varjani S, Reshmy R, Mathachan Aneesh E, Binod P, Sindhu R. Integrated biorefinery development for pomegranate peel: Prospects for the production of fuel, chemicals and bioactive molecules. BIORESOURCE TECHNOLOGY 2022; 362:127833. [PMID: 36029981 DOI: 10.1016/j.biortech.2022.127833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste. The review also discusses its usage as a carbon substrate to synthesize bioactive compounds like phenolics, flavonoids and its use in enzyme biosynthesis. Based on reported experimental evidence, it is apparent that pomegranate peel has a large number of applications, and therefore, the development of an integrated biorefinery concept to use pomegranate peel will aid in effectively utilizing its significant advantages. The biorefinery method displays a promising approach for efficiently using pomegranate peel; nevertheless, further studies should be needed in this area.
Collapse
Affiliation(s)
- K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - A Surendhar
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Laya Liz Kuriakose
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201 301, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, 11 Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Sharrel Rebello
- School of Food Science and Technology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India.
| |
Collapse
|
6
|
Yang X, Niu Z, Wang X, Lu X, Sun J, Carpena M, Prieto M, Simal-Gandara J, Xiao J, Liu C, Li N. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xuhan Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaorui Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - M. Carpena
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - M.A. Prieto
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jesus Simal-Gandara
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jianbo Xiao
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Polyethylene Films Containing Plant Extracts in the Polymer Matrix as Antibacterial and Antiviral Materials. Int J Mol Sci 2021; 22:ijms222413438. [PMID: 34948232 PMCID: PMC8708998 DOI: 10.3390/ijms222413438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.
Collapse
|
8
|
Polyethylene Films Coated with Antibacterial and Antiviral Layers Based on CO2 Extracts of Raspberry Seeds, of Pomegranate Seeds and of Rosemary. COATINGS 2021. [DOI: 10.3390/coatings11101179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main goal of the work was to create an internal coating based on super critical CO2 extracts of raspberry seeds, pomegranate seeds and rosemary that could be active against chosen bacterial strains. Additionally, the synergistic effect of these substances in the coating were then analysed. The next goal of the work was to demonstrate the antiviral activity of the coatings against phi6 bacteriophage particles (airborne viruses surrogate). The results of the study indicated that three coatings containing a mixture of extracts showed bacteriolytic activity against S. aureus cells and bacteriostatic activity against E. coli and B. subtilis strains. Two coatings showed bacteriolytic activity against a P. syringae strain. As a result of the experiments, a synergistic effect was noted in the active additives/compounds in the coatings. These coatings may be used as internal coatings for packaging films to extend the shelf life of selected food products. All seven coatings may also be used as external coatings with antiviral activity, as these coatings demonstrated significant effects on the phi6 phage, selected as a surrogate for airborne viruses, e.g., coronaviruses. It could be concluded that coatings I–VII will also show antiviral effects on SARS-CoV-2 particles.
Collapse
|