1
|
Nie SQ, Chen MQ, Li QH. Evaluation on hydrothermal gasification of styrene-butadiene rubber with oxidants via ReaxFF-MD simulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:195-206. [PMID: 37660632 DOI: 10.1016/j.wasman.2023.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Styrene-butadiene rubber (SBR) is widely used in tires, which brings great challenge to the disposal and reclaiming of the used tires. The ring-opening reaction pathways of benzene rings in hydrothermal gasification of styrene-butadiene rubber were revealed based on reactive force field molecular dynamics (ReaxFF-MD) simulation. H-abstraction reaction that OH radicals capture H atom from the vinyl group of styrene was critical to the degrading of the styrene monomers. The energy barrier of H2O2 converted to OH radicals was lower than that of O2 and pure water converted to OH radicals. The oxidants that can urge OH radical formed in reaction were beneficial to SBR degradation, which could be assigned to confirm that SBR degradation with H2O2 was better than that with oxygen at the same concentration. The addition of oxidant could be helpful for decreasing the degradation temperature of styrene monomers. At oxidant equivalent ratio (ER) of 0.1, H2 yield at 2500 K lifted after 135 ps and increased by 75% at 500 ps compared with that without oxidants. According to the chemical equilibrium analysis, the optimal ER for H2 was 0.4 between 350 and 600 °C (real temperatures). The results could provide theoretic support and experiment guidance for adding oxidants in reclaiming waste rubber products.
Collapse
Affiliation(s)
- S Q Nie
- Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, Beijing 100044, China.
| | - M Q Chen
- Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, Beijing 100044, China.
| | - Q H Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Feng P, Yang W, Xu D, Ma M, Guo Y, Jing Z. Characteristics, mechanisms and measurement methods of dissolution and deposition of inorganic salts in sub-/supercritical water. WATER RESEARCH 2022; 225:119167. [PMID: 36183545 DOI: 10.1016/j.watres.2022.119167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The efficient and harmless treatment of hypersaline organic wastes has become an urgent environmental problem. Compared to traditional thermochemical methods, supercritical water oxidation has been proven to be an efficient organic waste treatment technology due to the advantages of low cost, high degradation rate, no secondary pollutants, etc. However, the solubilities of inorganic salts drop rapidly near the critical point of water, and some sticky salts form easily agglomerates and then adhere to internal surfaces of reactor and pipeline, causing plugging and inhibition of heat transfer. Hence, the characteristics, mechanisms and measurement methods of the dissolution and deposition of inorganic salts in sub-/supercritical water are summarized and analyzed systematically and comprehensively in this work, intending to provide a valuable guide for salt deposition prevention and subsequent research directions. Firstly, a new classification form of inorganic salt is put forward based on melting point. The phase equilibriums of brine systems are then analyzed in detail. Six theories concerning dissolution mechanisms are discussed deeply and various measurement methods of salt solubility are also supplemented. Furthermore, salt deposition characteristics and related measurement technologies are summarized. Notably, a new idea "hydrothermal molten salt" system is reviewed which may provide a solution for salt deposition in sub/supercritical water. Finally, an outlook for the follow-up researches is prospected and some suggestions are proposed.
Collapse
Affiliation(s)
- Peng Feng
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wanpeng Yang
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Mingyan Ma
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yang Guo
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zefeng Jing
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|