1
|
Wei X, Yin Q, Zhao H, Jiang H, He J, Cai C, Cao Y, Yao J. Maternal nicotinamide supplementation during late gestation and early lactation alters hepatic glucose and lipid metabolism in kids. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Li H, Ran T, He Z, Yan Q, Tang S, Tan Z. Postnatal developmental changes of the small intestinal villus height, crypt depth and hexose transporter mRNA expression in supplemental feeding and grazing goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Katz MS, Thatch KA, Schwartz MZ. Gene alterations and intestinal mucosal changes following growth factor and omega-3 exposure in a rat model of inflammatory bowel disease. J Pediatr Surg 2013; 48:345-52. [PMID: 23414863 DOI: 10.1016/j.jpedsurg.2012.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND We have previously shown that there is synergism between Hepatocyte Growth Factor (HGF) and Omega-3 (OM-3) enriched feeds using an immunologic model of inflammatory bowel disease (IBD). This combination decreased inflammation and cytokine levels and increased microvascular density and mucosal mass. This study evaluates the gene alterations that occurred using this same model. METHODS Twenty adult female transgenic HLA-B27 rats were divided into four groups: Group 1: (Regular feeds, IV saline); Group 2: (OM-3 feeds, IV saline); Group 3: (Regular feeds, IV HGF 150 μg/kg/day); Group 4: (OM-3 feeds, IV HGF 150 μg/kg/day). Rats were sacrificed 14 days after pump placement. Bowel was harvested and RNA extracted. Microarray gene chips were used. Statistical analysis was done by analysis of variance using Partek Genomics Suite. Results were significant if fold change was more than 2 or less than -2, with P<0.05. RESULTS In the ileum, HGF up- or down-regulated 34 genes, while OM-3 affected 60 genes. Together 68 genes were affected. Families with a synergistic effect included Solute Carrier Proteins, ATP Binding Cassette Proteins, and Matrix Metalloproteinases. In the colon, 23 genes were affected by HGF, while 66 genes were affected with OM-3. Combined exposure affected 32 genes, including a synergistic effect on solute carrier proteins, aquaporins, and immunologic factors. CONCLUSIONS There is a synergistic gene alteration effect of exposure of two (HGF and Omega-3 enriched feeds) agents on bowel mucosa. Of most interest was the synergistic effect on the solute carrier protein family, a previously identified gene family up-regulated in response to intestinal failure.
Collapse
Affiliation(s)
- Michael S Katz
- Department of Pediatric General, Thoracic and Minimally Invasive Surgery, St. Christopher's Hospital for Children and Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
4
|
Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 2012; 591:401-14. [PMID: 23129794 DOI: 10.1113/jphysiol.2011.215731] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology & Physiology, UMDNJ – New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07101-1749, USA
| | | |
Collapse
|
5
|
Chronology of the Effect of Massive Small Bowel Resection and Hepatocyte Growth Factor (HGF) on Intestinal Adaptation. J Surg Res 2011; 171:399-403. [DOI: 10.1016/j.jss.2011.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/06/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022]
|
6
|
Scow JS, Madhavan S, Chaudhry RM, Zheng Y, Duenes JA, Sarr MG. Differentiating passive from transporter-mediated uptake by PepT1: a comparison and evaluation of four methods. J Surg Res 2011; 170:17-23. [PMID: 21529830 PMCID: PMC3150389 DOI: 10.1016/j.jss.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND To quantify transmembrane transport of dipeptides by PepT1, passive uptake (non-PepT1 mediated) must be subtracted from total (measured) uptake. Three methods have been described to estimate passive uptake: perform experiments at cold temperatures, inhibit target dipeptide uptake with a greater concentration of a second dipeptide, or use modified Michaelis-Menten kinetics. We hypothesized that performing uptake experiments at pH 8.0 would estimate passive uptake accurately, because PepT1 requires a proton gradient. Our aim was to determine the most accurate method to estimate passive uptake. METHODS Caco-2 cells were incubated with various concentrations of glycyl-sarcosine (gly-sar) at pH 6.0 and at 37°C to measure total uptake. Passive uptake was estimated: (1) by incubating Caco-2 cells with varying concentrations of gly-sar at 4°C, (2) in the presence of 50 mM glycyl-leucine, (3) in solution at pH 8.0, or (4) using modified Michaelis-Menten kinetics. PepT1-mediated uptake was calculated by subtracting passive uptake from total uptake. K(m), V(max), and % gly-sar transported by PepT1 were calculated and compared. RESULTS K(m), V(max), and % gly-sar transported by PepT1 varied from 0.7 to 2.4 mM, 8.4 to 21.0 nmol/mg protein/10 min, and 69% to 87%, respectively. Uptakes calculated with cold, 50 mM gly-leu and using modified Michaelis-Menten kinetics were similar but differed significantly from uptake at pH 8.0 (P < 0.001). CONCLUSIONS Estimating passive uptake at pH 8.0 does not appear to be accurate. Measuring uptake at cold temperatures or in the presence of a greater concentration of a second dipeptide, and confirming results with modified Michaelis-Menten kinetics is recommended.
Collapse
Affiliation(s)
- Jeffrey S Scow
- Department of Surgery and GI Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
7
|
Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol 2011; 95:149-62. [PMID: 21854830 DOI: 10.1016/j.pneurobio.2011.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 04/28/2011] [Accepted: 07/20/2011] [Indexed: 12/17/2022]
Abstract
The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
8
|
Scow JS, Iqbal CW, Jones TW, Qandeel HG, Zheng Y, Duenes JA, Nagao M, Madhavan S, Sarr MG. Absence of evidence of translocation of GLUT2 to the apical membrane of enterocytes in everted intestinal sleeves. J Surg Res 2011; 167:56-61. [PMID: 20739033 PMCID: PMC3065950 DOI: 10.1016/j.jss.2010.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/05/2010] [Accepted: 04/15/2010] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Traditional models of intestinal glucose absorption confine GLUT2 to the basolateral membrane. Evidence suggests that GLUT2 is translocated to the apical membrane when the enterocyte is exposed to high luminal glucose concentrations. HYPOTHESIS GLUT2 translocates to the apical membrane by a PKC signaling mechanism dependent on activity of SGLT1 and the cellular cytostructure. METHODS Transporter-mediated glucose uptake was studied in rat jejunum using everted sleeves under seven conditions: Control, SGLT1 inhibition (phlorizin), GLUT2 inhibition (phloretin), both SGLT1 and GLUT2 inhibition, PKC inhibition (calphostin C or chelerythrine), and disruption of cellular cytostructure (nocodazole). Each condition was tested in iso-osmotic solutions of 1, 20, or 50 mM glucose for 1 or 5 min incubations (n = 6 rats each). RESULTS Control rats exhibited a saturable pattern of uptake at both durations of incubation. Phlorizin (P ≤ 0.006 each) inhibited markedly and phloretin (P ≤ 0.01 each) inhibited partially glucose uptake in all concentrations and time. Phloretin and phlorizin together completely inhibited uptake (P = 0.004 each). Calphostin C, chelerythrine, and nocodazole had little effect on glucose uptake at either 1 or 5 min. Inhibition of SGLT1 led to near complete cessation of transporter-mediated glucose uptake, while GLUT2 inhibition led to partial inhibition, suggesting some constitutive expression of GLUT2 in the apical membrane. Disruption of PKC signaling or cytoskeletal integrity partially inhibited transporter-mediated glucose uptake only in 1 mM glucose, suggesting a non-specific effect. CONCLUSIONS Under these conditions, it does not appear that GLUT2 is translocated to the apical membrane on the cellular cytostructure in response to PKC signaling.
Collapse
Affiliation(s)
- Jeffrey S Scow
- Mayo Clinic Department of Surgery, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Madhavan S, Scow JS, Chaudhry RM, Nagao M, Zheng Y, Duenes JA, Sarr MG. Intestinal adaptation for oligopeptide absorption via PepT1 after massive (70%) mid-small bowel resection. J Gastrointest Surg 2011; 15:240-7; discussion 247-9. [PMID: 21170601 PMCID: PMC3050655 DOI: 10.1007/s11605-010-1320-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/09/2010] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Proteins are absorbed primarily as short peptides via peptide transporter 1 (PepT1). HYPOTHESIS Intestinal adaptation for peptide absorption after massive mid-small intestinal resection occurs by increased expression of PepT1 in the remnant small intestine and colon. METHODS Peptide uptake was measured in duodenum, jejunum, ileum, and colon using glycyl-sarcosine 1 week (n = 9) and 4 weeks (n = 11) after 70% mid-small bowel resection and in corresponding segments from unoperated rats (n = 12) and after transection and reanastomosis of jejunum and ileum (n = 8). Expression of PepT1 (mRNA, protein) and villus height were measured. RESULTS Intestinal transection/reanastomosis did not alter gene expression. Compared to non-operated controls, 70% mid-small bowel resection increased jejunal peptide uptake (p < 0.05) associated with increased villus height (1.13 vs 1.77 and 1.50 mm, respectively, p < 0.01). In ileum although villus height increased at 1 and 4 weeks (1.03 vs 1.21 and 1.35 mm, respectively; p < 0.01), peptide uptake was not altered. PepT1 mRNA and protein were decreased at 1 week, and PepT1 protein continued low at 4 weeks. Gene expression, peptide uptake, and histomorphology were unchanged in the colon. CONCLUSIONS Jejunal adaptation for peptide absorption occurs by hyperplasia. Distal ileum and colon do not have a substantive role in adaptation for peptide absorption.
Collapse
Affiliation(s)
- Srivats Madhavan
- Department of Surgery and Gastroenterology Research Unit (GU 10-10), Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
The effect of hepatocyte growth factor on gene transcription during intestinal adaptation. J Pediatr Surg 2011; 46:357-65. [PMID: 21292088 DOI: 10.1016/j.jpedsurg.2010.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 12/11/2022]
Abstract
PURPOSE Previously, we investigated the physiologic effects of hepatocyte growth factor (HGF) on intestinal adaptation using a massive small bowel resection (MSBR) rat model. To correlate these altered physiologic changes with gene alterations, we used microarray technology at 7, 14, and 21 days after MSBR. METHODS Forty-five adult female rats were divided into 3 groups and underwent 70% MSBR, MSBR + HGF (intravenous 150 μg/kg per day), or sham operation (control). Five animals per group were killed at each time point. Ileal mucosa was harvested and RNA extracted. Rat Gene Chips and Expression Console software (Affymetrix, Santa Clara, CA) were used. Statistical analysis was done by analysis of variance using Partek Genomics Suite (Partek, Inc, St Louis, MO). Results were significant if fold change was more than 2 or less than -2, with P < .05. RESULTS Compared with the control group, MSBR group had significant increases in up-regulated and down-regulated genes. The MSBR-HGF group had further increases in up-regulated and down-regulated genes compared with the MSBR group. At 7 days, 6 cellular hypertrophy families had 30 genes up-regulated, and HGF up-regulated an additional 14 genes. At 21 days, 5 hyperplasia gene families had 32 up-regulated genes. Hepatocyte growth factor up-regulated an additional 16 genes. CONCLUSIONS Microarray analysis of intestinal adaptation identified an early emphasis on hypertrophy and later emphasis on hyperplasia. This is the first demonstration that the effect of HGF on intestinal adaptation is recruitment of more genes rather than an increase in the fold change of already up-regulated genes.
Collapse
|
11
|
Qandeel HG, Alonso F, Hernandez DJ, Duenes JA, Zheng Y, Scow JS, Sarr MG. Role of vagal innervation in diurnal rhythm of intestinal peptide transporter 1 (PEPT1). J Gastrointest Surg 2009; 13:1976-85. [PMID: 19707837 PMCID: PMC2830643 DOI: 10.1007/s11605-009-0984-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/24/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Protein is absorbed predominantly as di/tripeptides via H(+)/peptide cotransporter-1 (PEPT1). We demonstrated previously diurnal variations in expression and function of duodenal and jejunal but not ileal PEPT1; neural regulation of this pattern is unexplored. HYPOTHESIS Complete abdominal vagotomy abolishes diurnal variations in gene expression and transport function of PEPT1. METHODS Twenty-four rats maintained in a 12-h light/dark room [6AM-6PM] underwent abdominal vagotomy; 24 other rats were controls. Four weeks later, mucosal levels of mRNA and protein were measured at 9AM, 3PM, 9PM, and 3AM (n = 6 each) by quantitative real-time PCR and Western blots, respectively; transporter-mediated uptake of dipeptide (Gly-Sar) was measured by the everted-sleeve technique. RESULTS Diurnal variation in mRNA, as in controls, was retained post-vagotomy in duodenum and jejunum (peak at 3PM, p < 0.05) but not in ileum. Diurnal variations in expression of protein and Gly-Sar uptake, however, were absent post-vagotomy (p > 0.3). Similar to controls, maximal uptake was in jejunum after vagotomy (V (max), nmol/cm/min: jejunum vs. duodenum and ileum; 163 vs. 88 and 71 at 3AM; p < 0.04); K (m) remained unchanged. CONCLUSIONS Vagal innervation appears to mediate in part diurnal variations in protein expression and transport function of PEPT1, but not diurnal variation in mRNA expression of PEPT1.
Collapse
Affiliation(s)
- Hisham G Qandeel
- Gastrointestinal Research Unit and Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|