1
|
Yarabarla V, Mylarapu A, Han TJ, McGovern SL, Raza SM, Beckham TH. Intracranial meningiomas: an update of the 2021 World Health Organization classifications and review of management with a focus on radiation therapy. Front Oncol 2023; 13:1137849. [PMID: 37675219 PMCID: PMC10477988 DOI: 10.3389/fonc.2023.1137849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Meningiomas account for approximately one third of all primary intracranial tumors. Arising from the cells of the arachnoid mater, these neoplasms are found along meningeal surfaces within the calvarium and spinal canal. Many are discovered incidentally, and most are idiopathic, although risk factors associated with meningioma development include age, sex, prior radiation exposure, and familial genetic diseases. The World Health Organization grading system is based on histologic criteria, and are as follows: grade 1 meningiomas, a benign subtype; grade 2 meningiomas, which are of intermediately aggressive behavior and usually manifest histologic atypia; and grade 3, which demonstrate aggressive malignant behavior. Management is heavily dependent on tumor location, grade, and symptomatology. While many imaging-defined low grade appearing meningiomas are suitable for observation with serial imaging, others require aggressive management with surgery and adjuvant radiotherapy. For patients needing intervention, surgery is the optimal definitive approach with adjuvant radiation therapy guided by extent of resection, tumor grade, and location in addition to patient specific factors such as life expectancy. For grade 1 lesions, radiation can also be used as a monotherapy in the form of stereotactic radiosurgery or standard fractionated radiation therapy depending on tumor size, anatomic location, and proximity to dose-limiting organs at risk. Optimal management is paramount because of the generally long life-expectancy of patients with meningioma and the morbidity that can arise from tumor growth and recurrence as well as therapy itself.
Collapse
Affiliation(s)
- Varun Yarabarla
- Philadelphia College of Osteopathic Medicine, Suwanee, GA, United States
| | - Amrutha Mylarapu
- Department of Internal Medicine, Advent Health Redmond, Rome, GA, United States
| | - Tatiana J. Han
- Department of Internal Medicine, WellSpan Health, York, PA, United States
| | - Susan L. McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shaan M. Raza
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas H. Beckham
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Hergalant S, Casse JM, Oussalah A, Houlgatte R, Helle D, Rech F, Vallar L, Guéant JL, Vignaud JM, Battaglia-Hsu SF, Gauchotte G. MicroRNAs miR-16 and miR-519 control meningioma cell proliferation via overlapping transcriptomic programs shared with the RNA-binding protein HuR. Front Oncol 2023; 13:1158773. [PMID: 37601663 PMCID: PMC10433742 DOI: 10.3389/fonc.2023.1158773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Meningiomas are the most common type of primary central nervous system tumors. In about 80% cases, these tumors are benign and grow very slowly, but the remainder 20% can unlock higher proliferation rates and become malignant. In this study we examined two miRs, miR-16 and miR-519, and evaluated their role in tumorigenesis and cell growth in human meningioma. Methods A cohort of 60 intracranial grade 1 and grade 2 human meningioma plus 20 healthy meningeal tissues was used to quantify miR-16 and miR-519 expressions. Cell growth and dose-response assays were performed in two human meningioma cell lines, Ben-Men-1 (benign) and IOMM-Lee (aggressive). Transcriptomes of IOMM-lee cells were measured after both miR-mimics transfection, followed by integrative bioinformatics to expand on available data. Results In tumoral tissues, we detected decreased levels of miR-16 and miR-519 when compared with arachnoid cells of healthy patients (miR-16: P=8.7e-04; miR-519: P=3.5e-07). When individually overexpressing these miRs in Ben-Men-1 and IOMM-Lee, we observed that each showed reduced growth (P<0.001). In IOMM-Lee cell transcriptomes, downregulated genes, among which ELAVL1/HuR (miR-16: P=6.1e-06; miR-519:P=9.38e-03), were linked to biological processes such as mitotic cell cycle regulation, pre-replicative complex, and brain development (FDR<1e-05). Additionally, we uncovered a specific transcriptomic signature of miR-16/miR-519-dysregulated genes which was highly enriched in HuR targets (>6-fold; 79.6% of target genes). Discussion These results were confirmed on several public transcriptomic and microRNA datasets of human meningiomas, hinting that the putative tumor suppressor effect of these miRs is mediated, at least in part, via HuR direct or indirect inhibition.
Collapse
Affiliation(s)
- Sébastien Hergalant
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Matthieu Casse
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
| | - Rémi Houlgatte
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Déborah Helle
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, University Hospital of Nancy (CHRU), Nancy, France
- CNRS, UMR7039, CRAN - Centre de Recherche en Automatique de Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Laurent Vallar
- Genomics and Proteomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Louis Guéant
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
| | - Jean-Michel Vignaud
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Biopathology Institut De Cancérologie de Lorraine (CHRU-ICL), University Hospital of Nancy (CHRU), Nancy, France
- Centre de Ressources Biologiques BB-0033-00035, University Hospital of Nancy (CHRU), Nancy, France
| | - Shyue-Fang Battaglia-Hsu
- Department of Molecular Medicine and Personalized Therapeutics, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy (CHRU), Vandoeuvre-lès-Nancy, France
- CNRS, UMR7039, CRAN - Centre de Recherche en Automatique de Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Guillaume Gauchotte
- INSERM, U1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Biopathology Institut De Cancérologie de Lorraine (CHRU-ICL), University Hospital of Nancy (CHRU), Nancy, France
- Centre de Ressources Biologiques BB-0033-00035, University Hospital of Nancy (CHRU), Nancy, France
| |
Collapse
|
3
|
Azab MA, Cole K, Earl E, Cutler C, Mendez J, Karsy M. Medical Management of Meningiomas. Neurosurg Clin N Am 2023; 34:319-333. [PMID: 37210123 DOI: 10.1016/j.nec.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Meningiomas represent the most common type of benign tumor of the extra-axial compartment. Although most meningiomas are benign World Health Organization (WHO) grade 1 lesions, the increasingly prevalent of WHO grade 2 lesion and occasional grade 3 lesions show worsened recurrence rates and morbidity. Multiple medical treatments have been evaluated but show limited efficacy. We review the status of medical management in meningiomas, highlighting successes and failures of various treatment options. We also explore newer studies evaluating the use of immunotherapy in management.
Collapse
Affiliation(s)
- Mohammed A Azab
- Biomolecular Sciences Graduate Program, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | - Kyril Cole
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Emma Earl
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Chris Cutler
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 N Green Bay Rd., North Chicago, IL 60064, USA
| | - Joe Mendez
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT 84112, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
5
|
Kim J, Kim KH, Kim YZ. The Clinical Outcome of Hydroxyurea Chemotherapy after Incomplete Resection of Atypical Meningiomas. Brain Tumor Res Treat 2017; 5:77-86. [PMID: 29188208 PMCID: PMC5700031 DOI: 10.14791/btrt.2017.5.2.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/06/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the clinical results of adjuvant chemotherapy with hydroxyurea and to compare those with the results of postoperative radiotherapy after incomplete resection of atypical meningiomas (ATMNGs). METHODS We retrospectively reviewed the medical records of 84 patients with ATMNGs diagnosed in the period from January 2000 to December 2014. Clinical data included patient sex and age at the time of surgery, presenting symptoms at diagnosis, location and size of tumor, extent of surgery, use of postoperative radiotherapy or hydroxyurea chemotherapy, duration of follow-up, and progression. In terms of the extent of surgical resection, incomplete resection was defined as Simpson grade II-V. RESULTS Among the 85 patients, 55 (65.5%) patients underwent incomplete resection; 24 (43.6%) were treated with adjuvant hydroxyurea (group A), and 20 (36.4%) with postoperative radiotherapy (group B), and 11 (20.0%) underwent conservative treatment after surgery (group C). Twenty-five (45.5%) patients experienced the progression of tumors during the follow-up period (mean 47.7 months, range 12.4-132.1 months); 8 of 24 (33.3%) patients in group A, 7 of 20 (35.0%) patients in group B, and 10 of 11 (90.9%) patients in group C. The mean progression-free survival (PFS) was 30.9 months (range 6.4-62.3 months); 46.2 months in group A, 40.4 months in group B, and 11.9 months in group C (p=0.041). Multivariate analysis showed that Simpson grade (p=0.040), adjuvant treatment after surgery (p<0.001), increased Ki67 (p=0.017), mitotic index (p=0.034), and overexpression of p53 (p=0.026) predicted longer PFS. CONCLUSION This investigation suggested that adjuvant treatment after incomplete resection of ATMNGs are associated with longer PFS than conservative treatment, and that there is no difference of PFS between hydroxyurea chemotherapy and radiotherapy after surgery. Therefore, hydroxyurea chemotherapy can be considered as another adjuvant tool for the ATMNGs if the postoperative adjuvant radiotherapy cannot be applicable.
Collapse
Affiliation(s)
- Jungook Kim
- Division of Neuro-Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyu Hong Kim
- Division of Neuro-Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Zoon Kim
- Division of Neuro-Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
6
|
Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical Management of Meningiomas: Current Status, Failed Treatments, and Promising Horizons. Neurosurg Clin N Am 2016; 27:249-60. [PMID: 27012389 DOI: 10.1016/j.nec.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Meningiomas are benign tumors of the central nervous system, with low recurrence risk for World Health Organization (WHO) grade I lesions but a high risk for WHO grade II and III lesions. Current standard treatments include maximum safe surgical resection when indicated and radiation. Only three systemic therapies alpha-interferon, somatostatin receptor agonists, and vascular endothelial growth factor inhibitors are currently recommended by the National Comprehensive Cancer Network for treatment of recurrent meningioma. This paper aims to review medical approaches in the treatment of meningiomas.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Adam Cohen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|