1
|
Pinheiro AV, Petrucci GN, Dourado A, Pires I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals (Basel) 2023; 13:3392. [PMID: 37958147 PMCID: PMC10648213 DOI: 10.3390/ani13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Throughout the course of oncological disease, the majority of patients require surgical, anaesthetic and analgesic intervention. However, during the perioperative period, anaesthetic agents and techniques, surgical tissue trauma, adjuvant drugs for local pain and inflammation and other non-pharmacological factors, such as blood transfusions, hydration, temperature and nutrition, may influence the prognosis of the disease. These factors significantly impact the oncologic patient's immune response, which is the primary barrier to tumour progress, promoting a window of vulnerability for its dissemination and recurrence. More research is required to ascertain which anaesthetics and techniques have immunoprotective and anti-tumour effects, which will contribute to developing novel anaesthetic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
| | - Gonçalo N. Petrucci
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
2
|
Loibl S, Azim HA, Bachelot T, Berveiller P, Bosch A, Cardonick E, Denkert C, Halaska MJ, Hoeltzenbein M, Johansson ALV, Maggen C, Markert UR, Peccatori F, Poortmans P, Saloustros E, Saura C, Schmid P, Stamatakis E, van den Heuvel-Eibrink M, van Gerwen M, Vandecaveye V, Pentheroudakis G, Curigliano G, Amant F. ESMO Expert Consensus Statements on the management of breast cancer during pregnancy (PrBC). Ann Oncol 2023; 34:849-866. [PMID: 37572987 DOI: 10.1016/j.annonc.2023.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
The management of breast cancer during pregnancy (PrBC) is a relatively rare indication and an area where no or little evidence is available since randomized controlled trials cannot be conducted. In general, advances related to breast cancer (BC) treatment outside pregnancy cannot always be translated to PrBC, because both the interests of the mother and of the unborn should be considered. Evidence remains limited and/or conflicting in some specific areas where the optimal approach remains controversial. In 2022, the European Society for Medical Oncology (ESMO) held a virtual consensus-building process on this topic to gain insights from a multidisciplinary group of experts and develop statements on controversial topics that cannot be adequately addressed in the current evidence-based ESMO Clinical Practice Guideline. The aim of this consensus-building process was to discuss controversial issues relating to the management of patients with PrBC. The virtual meeting included a multidisciplinary panel of 24 leading experts from 13 countries and was chaired by S. Loibl and F. Amant. All experts were allocated to one of four different working groups. Each working group covered a specific subject area with two chairs appointed: Planning, preparation and execution of the consensus process was conducted according to the ESMO standard operating procedures.
Collapse
Affiliation(s)
- S Loibl
- GBG c/o GBG Forschungs GmbH, Neu-Isenburg; Centre for Haematology and Oncology Bethanien, Frankfurt am Main, Frankfurt; Goethe University Frankfurt, Frankfurt am Main, Frankfurt, Germany.
| | - H A Azim
- Breast Cancer Center, School of Medicine, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - T Bachelot
- Department of medical oncology, Centre Léon Bérard, Lyon, France
| | - P Berveiller
- Department of Gynecology and Obstetrics, Poissy-Saint Germain Hospital, Poissy; UMR 1198 - BREED, INRAE, Paris Saclay University, RHuMA, Montigny-Le-Bretonneux, France
| | - A Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund; Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - E Cardonick
- Cooper Medical School at Rowan University, Camden, USA
| | - C Denkert
- Philipps-University Marburg and Marburg University Hospital (UKGM), Marburg, Germany
| | - M J Halaska
- Department of Obstetrics and Gynaecology, Third Faculty of Medicine, Charles University in Prague and Universital Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - M Hoeltzenbein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Embryotox Center of Clinical Teratology and Drug Safety in Pregnancy, Berlin, Germany
| | - A L V Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Cancer Registry of Norway, Oslo, Norway
| | - C Maggen
- Department of Obstetrics and Prenatal Medicine, University Hospital Brussels, Brussels, Belgium
| | - U R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - F Peccatori
- Gynecologic Oncology Department, European Institute of Oncology IRCCS, Milan, Italy
| | - P Poortmans
- Iridium Netwerk, Antwerp; University of Antwerp, Antwerp, Belgium
| | - E Saloustros
- Department of Oncology, University General Hospital of Larissa, Larissa, Greece
| | - C Saura
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Schmid
- Cancer Institute, Queen Mary University London, London, UK
| | - E Stamatakis
- Department of Anesthesiology, 'Alexandra' General Hospital, Athens, Greece
| | | | - M van Gerwen
- Gynecologic Oncology, Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam; Department of Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC, University of Amsterdam; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - V Vandecaveye
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - G Pentheroudakis
- European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - G Curigliano
- Division of Early Drug Development, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - F Amant
- Gynecologic Oncology, Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam; Division Gynaecologic Oncology, UZ Leuven, Belgium
| |
Collapse
|
3
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|
4
|
Cai Q, Liu G, Huang L, Guan Y, Wei H, Dou Z, Liu D, Hu Y, Gao M. The Role of Dexmedetomidine in Tumor-Progressive Factors in the Perioperative Period and Cancer Recurrence: A Narrative Review. Drug Des Devel Ther 2022; 16:2161-2175. [PMID: 35821701 PMCID: PMC9271281 DOI: 10.2147/dddt.s358042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/28/2022] [Indexed: 12/20/2022] Open
Abstract
Dexmedetomidine, a specific α2 adrenergic receptor agonist, is highly frequently used in the perioperatively for its favorable pharmacology, such as mitigating postoperative cognitive dysfunction. Increasing attention has been recently focused on the effect of whether dexmedetomidine influences cancer recurrence, which urges the discussion of the role of dexmedetomidine in tumor-progressive factors. The pharmacologic characteristics of dexmedetomidine, the tumor-progressive factors in the perioperative period, and the relationships between dexmedetomidine and tumor-progressive factors were described in this review. Available evidence suggests that dexmedetomidine could reduce the degree of immune function suppression, such as keeping the number of CD3+ cells, NK cells, CD4+/CD8+ ratio, and Th1/Th2 ratio stable and decreasing the level of proinflammatory cytokine (interleukin 6 and tumor necrosis factor-alpha) during cancer operations. However, dexmedetomidine exhibits different roles in cell biological behavior depending on cancer cell types. The conclusions on whether dexmedetomidine would influence cancer recurrence could not be currently drawn for the lack of strong clinical evidence. Therefore, this is still a new area that needs further exploration.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Guoqing Liu
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Linsheng Huang
- Department of Hepatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Zhiqian Dou
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Dexi Liu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Yang Hu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
- Yang Hu, Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, People’s Republic of China, Tel +86-13995744850, Email
| | - Meiling Gao
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
- Correspondence: Meiling Gao, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China, Tel +86-15971849819, Email
| |
Collapse
|
5
|
Djamgoz MBA. Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms. Cancers (Basel) 2022; 14:2703. [PMID: 35681682 PMCID: PMC9179511 DOI: 10.3390/cancers14112703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.
Collapse
Affiliation(s)
- Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; ; Tel.: +44-796-181-6959
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, Turkey
| |
Collapse
|
6
|
Hao J, Zhang W, Huang Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered 2022; 13:6794-6806. [PMID: 35246010 PMCID: PMC9278971 DOI: 10.1080/21655979.2022.2036909] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to explore the effects of local anesthetic bupivacaine on bladder cancer cells in vivo and in vitro. The cytotoxicity was detected by MTT assay. Apoptosis was measured by Hoechst 33342 staining and TUNEL. The contents of Fe2+, Malondialdehyde (MDA), Glutathione (GSH) and reactive oxygen species (ROS) were evaluated by the corresponding kit. Mitochondrial membrane potential was assessed by JC-1 kit. HE staining, TUNEL and immunohistochemistry were used to detect the xenografted tumors. Protein expression was estimated by Western blot. Bupivacaine significantly inhibited the activity of T24 cells and 5637 cells at 0.25-16 mM. Bupivacaine promoted cell apoptosis with increased concentration. bupivacaine inhibited the expression of Bcl-2 and increased the expression of Bax and cytochrome C. Moreover, bupivacaine amplified the level of Fe2+ and ROS, and restrained the expression of cystine/glutamic acid reverse transporter (xCT) and glutathione peroxidase 4 (GPX4). Further results showed that bupivacaine decreased mitochondrial membrane potential, reduced GSH, and increased MDA levels. Besides, bupivacaine attenuated the phosphorylation of PI3K, Akt, and mTOR. In addition, bupivacaine suppressed the growth of xenografted tumors, induced apoptosis and ferroptosis, and inhibited the activity of PI3K/AKT signaling pathway in xenografted tumors. Bupivacaine could induce apoptosis and ferroptosis by inhibiting PI3K/Akt signaling pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Jianli Hao
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Weiqing Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Zeqing Huang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|
7
|
Liu B, Yan X, Hou Z, Zhang L, Zhang D. Impact of Bupivacaine on malignant proliferation, apoptosis and autophagy of human colorectal cancer SW480 cells through regulating NF-κB signaling path. Bioengineered 2021; 12:2723-2733. [PMID: 34151717 PMCID: PMC8806862 DOI: 10.1080/21655979.2021.1937911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To probe into the impact of Bupivacaine on colorectal cancer (CRC) proliferation, apoptosis, and autophagy through regulating the NF-κB signaling pathway. Our work treated CRC cells with Bupivacaine, detected cell vitality through MTT assay, apoptosis through flow cytometry, cell migration through wound healing assay, NF-κB activity through immunofluorescence, inflammatory factor level, including TNF-α, IL-1β as well as IL-6 through ESLIA, apoptosis factor mRNA expression, including Bcl-2, Bax and caspase-3q through qRT-PCR, and protein expression linking with NF-κB signaling pathway as well as autophagy-related proteins via western blot. In in vivo experiments, we explored the impact of Bupivacaine on tumor volume, tumor and NF-κB expression. The results showed that 1 mM Bupivacaine was available to signally inhibit CRC cell vitality, promoted apoptosis rate and apoptosis gene expression, like Bax, and caspase-3, inhibited Bcl-2 expression, inhibited cancer cell migration, promoted autophagy-related protein LC3B II/LC3B I ratio and beclin-1 expression, and inhibited p62 expression. Additionally, it could elevate inflammatory factor level and induce IKK and IκB phosphorylation as well as NF-κB proteins. In in vivo experiments, Bupivacaine inhibited tumor volume and tumor, as well as NF-κB expression. In short, bupivacaine is available to inhibit CRC proliferation through regulating NF-κB signaling pathway, promote apoptosis and autophagy, and can be used as a potential drug to treat CRC in the future.
Collapse
Affiliation(s)
- Bingwu Liu
- Department of Anesthesiology, The Second Children and Women's Healthcare of Jinan City, Jinan City, Shandong Province, China
| | - Xinfeng Yan
- Department of Anesthesiology, The Second Children and Women's Healthcare of Jinan City, Jinan City, Shandong Province, China
| | - Zuojia Hou
- Department of Anesthesiology, Laiwu People's Hospital of Jinan City, Jinan City, Shandong Province, China
| | - Lei Zhang
- Department of Anesthesiology, Laiwu Iron and Steel Group Laiwu Mining Co., Ltd. Staff Hospital, Jinan City, Shandong Province, China
| | - Duwen Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| |
Collapse
|
8
|
Bagaphou TC, Santonastaso DP, Scopetta F, Cerotto V, Carli L, Martinelli S, Fusco P, DE Robertis E. The difficult challenge of post-operative pain management in heroin addicted patients undergoing breast cancer surgery. Minerva Anestesiol 2021; 87:1053-1054. [PMID: 34102810 DOI: 10.23736/s0375-9393.21.15686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thierry C Bagaphou
- Section of Anesthesia, Intensive care and Pain Medicine, Ospedale di Città di Castello, Città di Castello, Perugia, Italy
| | - Domenico P Santonastaso
- Section of Anesthesia and Intensive Care, AUSL Romagna, M. Bufalini Hospital, Cesena, Italy -
| | - Francesca Scopetta
- Section of Anesthesia, Intensive care and Pain Medicine, Ospedale di Città di Castello, Città di Castello, Perugia, Italy
| | - Vittorio Cerotto
- Section of Anesthesia, Intensive care and Pain Medicine, Ospedale di Città di Castello, Città di Castello, Perugia, Italy
| | - Luciano Carli
- Breast Unit, Department of Surgery, Ospedale di Città di Castello, Città di Castello, Perugia, Italy
| | - Stefano Martinelli
- Section of Anesthesia, Intensive care and Pain Medicine, Ospedale di Città di Castello, Città di Castello, Perugia, Italy
| | - Pierfrancesco Fusco
- Section of Anesthesia and Intensive Care and Pain Medicine, San Salvatore Hospital, L'Aquila, Italy
| | - Edoardo DE Robertis
- Section of Anesthesia, Analgesia and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Mohamed SAB, Abdel-Ghaffar HS, Hassan NAA, El Sherif FA, Shouman SA, Omran MM, Hassan SB, Allam AAAEM, Sayed DG. Pharmacokinetics and Pharmacodynamics of 3 Doses of Oral-Mucosal Dexmedetomidine Gel for Sedative Premedication in Women Undergoing Modified Radical Mastectomy for Breast Cancer. Anesth Analg 2021; 132:456-464. [PMID: 32889844 DOI: 10.1213/ane.0000000000005108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Buccal dexmedetomidine (DEX) produces adequate preoperative sedation and anxiolysis when used as a premedication. Formulating the drug as a gel decreases oral losses and improves the absorption of buccal DEX. We compared pharmacokinetic and pharmacodynamic properties of 3 doses of buccal DEX gel formulated in our pharmaceutical laboratory for sedative premedication in women undergoing modified radical mastectomy for breast cancer. METHODS Thirty-six patients enrolled in 3 groups (n = 12) to receive buccal DEX gel 30 minutes before surgery at 0.5 µg/kg (DEX 0.5 group), 0.75 µg/kg (DEX 0.75 group), or 1 µg/kg (DEX 1 group). Assessments included plasma concentrations of DEX, and pharmacokinetic variables calculated with noncompartmental methods, sedative, hemodynamic and analgesic effects, and adverse effects. RESULTS The median time to reach peak serum concentration of DEX (Tmax) was significantly shorter in patients who received 1 µg/kg (60 minutes) compared with those who received 0.5 µg/kg (120 minutes; P = .003) and 0.75 µg/kg (120 minutes; P = .004). The median (first quartile-third quartile) peak concentration of DEX (maximum plasma concentration [Cmax]) in plasma was 0.35 ng/mL (0.31-0.49), 0.37 ng/mL (0.34-0.40), and 0.54 ng/mL (0.45-0.61) in DEX 0.5, DEX 0.75, and DEX 1 groups (P = .082). The 3 doses did not produce preoperative sedation. The 1 µg/kg buccal DEX gel produced early postoperative sedation and lower intraoperative and postoperative heart rate values. Postoperative analgesia was evident in the 3 doses in a dose-dependent manner with no adverse effects. CONCLUSIONS Provided that it is administered 60-120 minutes before surgery, sublingual administration of DEX formulated as an oral-mucosal gel may provide a safe and practical means of sedative premedication in adults.
Collapse
Affiliation(s)
- Sahar Abdel-Baky Mohamed
- From the Department of Anesthesia, Intensive Care and Pain Management, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Hala Saad Abdel-Ghaffar
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nivin Abdel-Azim Hassan
- Department of Cancer Biology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Fatma Adel El Sherif
- From the Department of Anesthesia, Intensive Care and Pain Management, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Mervat Mostafa Omran
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | - Doaa Gomaa Sayed
- From the Department of Anesthesia, Intensive Care and Pain Management, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Motaghi E, Ghasemi Pirbalooti M, Bozorgi H, Eslami M, Rashidi M. Safety and Efficacy of Dexmedetomidine in Breast Surgeries: A Systematic Review and Meta-Analysis. J Perianesth Nurs 2020; 36:179-186. [PMID: 33303343 DOI: 10.1016/j.jopan.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Pain control during and after breast surgery is still a challenging task. Dexmedetomidine (DEX) is considered as a sedative agent that is widely used perineurally or intravenously as an adjuvant in general anesthesia and critical care medicine practice. The aim of this study is to evaluate the efficacy of perineural DEX and intravenous (IV) DEX and their effects on postoperative complications in breast surgeries. DESIGN Systematic review and meta-analysis. METHODS The present study systematically reviewed all identified randomized controlled trials for efficacy and safety of IV and perineural use of DEX in breast surgeries. Databases were searched for articles published before October 2019. FINDINGS Twelve trials were identified including 803 patients undergoing breast surgery. Although administration of IV DEX and its use with pectoral nerve (Pecs) block significantly postponed time for first analgesic request and decreased pain score at 1 and 12 hours after surgery, paravertebral use of DEX had no statistically significant effect. Pooled data about perineural DEX showed no significant effect on postoperative nausea and vomiting (PONV), whereas IV DEX significantly reduced PONV. Pooled analysis also showed that DEX administration did not significantly affect postoperative complications, such as postoperative itching, bradycardia, and pneumothorax in patients undergoing breast surgery. CONCLUSIONS The results showed that unlike paravertebral DEX, both DEX use with Pecs blocks and IV DEX were effective in control of postoperative pain in patients undergoing breast surgeries. Unlike perineural DEX, IV DEX significantly reduced PONV.
Collapse
Affiliation(s)
- Ehsan Motaghi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Hooman Bozorgi
- Department of Pharmacology, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Rashidi
- Faculty of Medicine, Department of Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Is opioid-free general anesthesia for breast and gynecological surgery a viable option? Curr Opin Anaesthesiol 2019; 32:257-262. [DOI: 10.1097/aco.0000000000000716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|