1
|
Guro P, Kuznetsova I, Sazanova A, Belimov A, Safronova V. Whole-genome sequence of non-rhizobial strain Tardiphaga sp. 709 isolated from the root nodule of Astragalus inopinatus Borris., growing on the Kamchatka Peninsula. Microbiol Resour Announc 2025; 14:e0092324. [PMID: 39688436 PMCID: PMC11737185 DOI: 10.1128/mra.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
We report the whole-genome sequence of the non-rhizobial endosymbiotic bacteria Tardiphaga sp. strain 709, which was isolated from the root nodule of Astragalus inopinatus Borris. on the Kamchatka Peninsula, Russia. The genome consists of one chromosome and one plasmid with a total length of 6,359,564 bp and 61.5% of GC content.
Collapse
Affiliation(s)
- Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.-Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.-Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.-Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.-Petersburg, Russia
| | - Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.-Petersburg, Russia
| |
Collapse
|
2
|
Jiang J, Hu D, Pei E. Integrated omics analysis reveals a correlation between gut microbiota and egg production in captive African penguins (Spheniscus demersus). Anim Reprod Sci 2024; 263:107448. [PMID: 38428346 DOI: 10.1016/j.anireprosci.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The egg production of captive African penguins differs considerably between individuals. An understanding of the physiological differences in African penguins with relatively greater and lesser egg production is meaningful for the captive breeding program of this endangered species. The objective of this study was to investigate differential microbial composition and metabolites in captive African penguins with different egg production. Fecal samples were collected from captive female African penguins during the breeding season. The results of 16 S rRNA gene sequencing showed that African penguins with different egg production had similar microbial diversities, whereas a significant difference was observed between their microbial community structure. African penguins with relatively greater egg production exhibited a higher relative abundance of Alphaproteobacteria, Rhizobiales, Bradyrhizobiaceae, Bradyrhizobium and Bosea. Meanwhile, penguins with relatively lesser egg production had an increased proportion of Klebsiella and Plesiomonas. We further identified a total of 1858 metabolites in female African penguins by liquid chromatography-mass spectrometry analysis. Among these metabolites, 13 kinds of metabolites were found to be significantly differential between African penguins with different egg production. In addition, the correlation analysis revealed that the egg production had significant correlations with most of the differential microbial bacteria and metabolites. Our findings might aid in understanding the potential mechanism underlying the phenomenon of abnormal egg production in captive African penguins, and provide novel insights into the relationship between gut microbiota and reproduction in penguins.
Collapse
Affiliation(s)
- Jingle Jiang
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Di Hu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Enle Pei
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China.
| |
Collapse
|
3
|
Bao Z, Wang C, Cao J, Zhang T, Guo Y, Sato Y, Nishizawa T, Ohta H. Tardiphaga alba sp. nov., a heavy-metal-tolerant bacterium isolated from garden soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38197779 DOI: 10.1099/ijsem.0.006238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
A previously undescribed, heavy-metal-tolerant, motile, Gram-negative bacterium, designated strain SK50-23T, was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SK50-23T was closely related to Tardiphaga robiniae LMG 26467T and the non-phototrophic 'Rhodopseudomonas boonkerdii' NS23T (98.1 and 97.3 % 16S rRNA gene sequence similarity, respectively). Strain SK50-23T possessed a circular genome of 5.86 Mb, with a DNA G+C content of 61.9 mol%. Digital DNA-DNA hybridization showed 20.8-21.6 % similarity between strain SK50-23T and related species. In addition, the whole-genome average nucleotide identity values between strain SK50-23T and related species ranged from 75.1 to 83.5 %. The major cellular fatty acid identified in strain SK50-23T was C18 : 1ω7c, and the main isoprenoid quinone present was ubiquinone Q-10. Strain SK50-23T could be assigned to the genus Tardiphaga with the species name Tardiphaga alba sp. nov. based on morphological, chemotaxonomic and genome-based taxonomic characteristics, and 16S rRNA gene-based phylogenetic characteristics. The type strain of the proposed novel species is SK50-23T (=NBRC 108825T=CGMCC No. 1.12037T).
Collapse
Affiliation(s)
- Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
- Department of Bioresource Science, Ibaraki University College of Agriculture, Ami-machi, Ibaraki 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Chaojun Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jiahui Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Tingting Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yong Guo
- Department of Bioresource Science, Ibaraki University College of Agriculture, Ami-machi, Ibaraki 300-0393, Japan
- Present address: Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8605, Japan
| | - Yoshinori Sato
- Department of Bioresource Science, Ibaraki University College of Agriculture, Ami-machi, Ibaraki 300-0393, Japan
- Present address: Center for Conservation Science and Restoration Techniques, National Research Institute for Cultural Properties, Tokyo, Taito-ku, Tokyo 110-8713, Japan
| | - Tomoyasu Nishizawa
- Department of Bioresource Science, Ibaraki University College of Agriculture, Ami-machi, Ibaraki 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture, Ami-machi, Ibaraki 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
4
|
Zhang N, Jin CZ, Zhuo Y, Li T, Jin FJ, Lee HG, Jin L. Genetic diversity into a novel free-living species of Bradyrhizobium from contaminated freshwater sediment. Front Microbiol 2023; 14:1295854. [PMID: 38075887 PMCID: PMC10708946 DOI: 10.3389/fmicb.2023.1295854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 10/10/2024] Open
Abstract
A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.
Collapse
Affiliation(s)
- Naxue Zhang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Zhuo
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taihua Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Avontuur JR, Wilken PM, Palmer M, Coetzee MPA, Stępkowski T, Venter SN, Steenkamp ET. Complex evolutionary history of photosynthesis in Bradyrhizobium. Microb Genom 2023; 9:001105. [PMID: 37676703 PMCID: PMC10569730 DOI: 10.1099/mgen.0.001105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Bradyrhizobium comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate. Therefore, our aim here was to investigate the distribution and evolution of photosynthesis in Bradyrhizobium using comparative genomics and representative genomes from closely related taxa in the families Nitrobacteraceae, Methylobacteriaceae, Boseaceae and Paracoccaceae . We identified photosynthesis gene clusters (PGCs) in 25 genomes belonging to three different Bradyrhizobium lineages, notably the so-called Photosynthetic, B. japonicum and B. elkanii supergroups. Also, two different PGC architectures were observed. One of these, PGC1, was present in genomes from the Photosynthetic supergroup and in three genomes from a species in the B. japonicum supergroup. The second cluster, PGC2, was also present in some strains from the B. japonicum supergroup, as well as in those from the B. elkanii supergroup. PGC2 was largely syntenic to the cluster found in Rhodopseudomonas palustris and Tardiphaga . Bayesian ancestral state reconstruction unambiguously showed that the ancestor of Bradyrhizobium lacked a PGC and that it was acquired horizontally by various lineages. Maximum-likelihood phylogenetic analyses of individual photosynthesis genes also suggested multiple acquisitions through horizontal gene transfer, followed by vertical inheritance and gene losses within the different lineages. Overall, our findings add to the existing body of knowledge on Bradyrhizobium ’s evolution and provide a meaningful basis from which to explore how these PGCs and the photosynthesis itself impact the physiology and ecology of these bacteria.
Collapse
Affiliation(s)
- Juanita R. Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Jardim ACM, de Oliveira JE, Alves LDM, Gutuzzo GO, de Oliveira ALM, Rodrigues EP. Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C. Braz J Microbiol 2022; 53:1409-1424. [PMID: 35499750 PMCID: PMC9433639 DOI: 10.1007/s42770-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Plant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B. trimera from Ponta Grossa and Ortigueira localities and identified by sequencing and restriction analysis of the 16S rDNA. The most promising isolates were screened for antifungal activities and the production of siderophores and biosurfactants. B. trimera presented a diverse community of rhizobacteria, constituted of 26 families and 41 genera, with a predominance of Streptomyces and Bacillus genera, followed by Paenibacillus, Staphylococcus, Methylobacterium, Rhizobium, Tardiphaga, Paraburkholderia, Burkholderia, and Pseudomonas. The more abundant genera were represented by different species, showing a high diversity of the microbiota associated to B. trimera. Some of these isolates potentially represent novel species and deserve further examination. The communities were influenced by both the edaphic properties of the sampling locations and the plant niches. Approximately one-third of the rhizobacteria exhibited antifungal activity against Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, and a high proportion of isolates produced siderophores (25%) and biosurfactants (42%). The most promising isolates were members of the Streptomyces genus. The survey of B. trimera returned a diverse community of culturable rhizobacteria and identified potential candidates for the development of plant growth-promoting and protection products, reinforcing the need for more comprehensive investigations of the microbiota of Brazilian native plants and habitats.
Collapse
Affiliation(s)
- Ana Camila Munis Jardim
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Jéssica Ellen de Oliveira
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Luana de Moura Alves
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Giovana Oliveira Gutuzzo
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - André Luiz Martinez de Oliveira
- Laboratório de Bioquímica de Microrganismos, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Elisete Pains Rodrigues
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil.
| |
Collapse
|
7
|
Mayhood P, Mirza BS. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Nonrhizobial Endophytes. Appl Environ Microbiol 2021; 87:e02884-20. [PMID: 33674438 PMCID: PMC8117765 DOI: 10.1128/aem.02884-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Soybean root nodules are known to contain a high diversity of both rhizobial endophytes and nonrhizobial endophytes (NREs). Nevertheless, the variation of these bacteria among different root nodules within single plants has not been reported. So far, it is unclear whether the selection of NREs among different root nodules within single plants is a random process or is strictly controlled by the host plant to favor a few specific NREs based on their beneficial influence on plant growth. As well, it is also unknown if the relative frequency of NREs within different root nodules is consistent or if it varies based on the location or size of a root nodule. We assessed the microbiomes of 193 individual soybean root nodules from nine plants using high-throughput DNA sequencing. Bradyrhizobium japonicum strains occurred in high abundance in all root nodules despite the presence of other soybean-compatible rhizobia, such as Ensifer, Mesorhizobium, and other species of Bradyrhizobium in soil. Nitrobacter and Tardiphaga were the two nonrhizobial genera that were uniformly detected within almost all root nodules, though they were in low abundance. DNA sequences related to other NREs that have frequently been reported, such as Bacillus, Pseudomonas, Flavobacterium, and Variovorax species, were detected in a few nodules. Unlike for Bradyrhizobium, the low abundance and inconsistent occurrence of previously reported NREs among different root nodules within single plants suggest that these microbes are not preferentially selected as endophytes by host plants and most likely play a limited part in plant growth as endophytes.IMPORTANCE Soybean (Glycine max L.) is a valuable food crop that also contributes significantly to soil nitrogen by developing a symbiotic association with nitrogen-fixing rhizobia. Bacterial endophytes (both rhizobial and nonrhizobial) are considered critical for the growth and resilience of the legume host. In the past, several studies have suggested that the selection of bacterial endophytes within root nodules can be influenced by factors such as soil pH, nutrient availability, host plant genotype, and bacterial diversity in soil. However, the influence of size or location of root nodules on the selection of bacterial endophytes within soybean roots is unknown. It is also unclear whether the selection of nonrhizobial endophytes within different root nodules of a single plant is a random process or is strictly regulated by the host. This information can be useful in identifying potential bacterial species for developing bioinoculants that can enhance plant growth and soil nitrogen.
Collapse
Affiliation(s)
- Parris Mayhood
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Babur S Mirza
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| |
Collapse
|
8
|
Gohar D, Pent M, Põldmaa K, Bahram M. Bacterial community dynamics across developmental stages of fungal fruiting bodies. FEMS Microbiol Ecol 2021; 96:5894922. [PMID: 32816035 DOI: 10.1093/femsec/fiaa175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggest that bacteria form diverse communities in various eukaryotic hosts, including fungi. However, little is known about their succession and the functional potential at different host development stages. Here we examined the effect of fruiting body parts and developmental stages on the structure and potential function of fungus-associated bacterial communities. Using high-throughput sequencing, we characterized bacterial communities and their associated potential functions in fruiting bodies from ten genera belonging to four major mushroom-forming orders and three different developmental stages of a model host species Cantharellus cibarius. Our results demonstrate that bacterial community structure differs between internal and external parts of the fruiting body but not between inner tissues. The structure of the bacterial communities showed significant variation across fruiting body developmental stages. We provide evidence that certain functional groups, such as those related to nitrogen fixation, persist in fruiting bodies during the maturation, but are replaced by putative parasites/pathogens afterwards. These data suggest that bacterial communities inhabiting fungal fruiting bodies may play important roles in their growth and development.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| |
Collapse
|
9
|
Abstract
Over the course of evolution for billions of years, bacteria that are capable of light-driven energy production have occupied every corner of surface Earth where sunlight can reach. Only two general biological systems have evolved in bacteria to be capable of net energy conservation via light harvesting: one is based on the pigment of (bacterio-)chlorophyll and the other is based on proton-pumping rhodopsin. There is emerging genomic evidence that these two rather different systems can coexist in a single bacterium to take advantage of their contrasting characteristics in the number of genes involved, biosynthesis cost, ease of expression control, and efficiency of energy production and thus enhance the capability of exploiting solar energy. Our data provide the first clear-cut evidence that such dual phototrophy potentially exists in glacial bacteria. Further public genome mining suggests this understudied dual phototrophic mechanism is possibly more common than our data alone suggested. Conserving additional energy from sunlight through bacteriochlorophyll (BChl)-based reaction center or proton-pumping rhodopsin is a highly successful life strategy in environmental bacteria. BChl and rhodopsin-based systems display contrasting characteristics in the size of coding operon, cost of biosynthesis, ease of expression control, and efficiency of energy production. This raises an intriguing question of whether a single bacterium has evolved the ability to perform these two types of phototrophy complementarily according to energy needs and environmental conditions. Here, we report four Tardiphaga sp. strains (Alphaproteobacteria) of monophyletic origin isolated from a high Arctic glacier in northeast Greenland (81.566° N, 16.363° W) that are at different evolutionary stages concerning phototrophy. Their >99.8% identical genomes contain footprints of horizontal operon transfer (HOT) of the complete gene clusters encoding BChl- and xanthorhodopsin (XR)-based dual phototrophy. Two strains possess only a complete XR operon, while the other two strains have both a photosynthesis gene cluster and an XR operon in their genomes. All XR operons are heavily surrounded by mobile genetic elements and are located close to a tRNA gene, strongly signaling that a HOT event of the XR operon has occurred recently. Mining public genome databases and our high Arctic glacial and soil metagenomes revealed that phylogenetically diverse bacteria have the metabolic potential of performing BChl- and rhodopsin-based dual phototrophy. Our data provide new insights on how bacteria cope with the harsh and energy-deficient environment in surface glacier, possibly by maximizing the capability of exploiting solar energy.
Collapse
|
10
|
Safronova VI, Guro PV, Sazanova AL, Kuznetsova IG, Belimov AA, Yakubov VV, Chirak ER, Afonin AМ, Gogolev YV, Andronov EE, Tikhonovich IA. Rhizobial Microsymbionts of Kamchatka Oxytropis Species Possess Genes of the Type III and VI Secretion Systems, Which Can Affect the Development of Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1232-1241. [PMID: 32686981 DOI: 10.1094/mpmi-05-20-0114-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica, and O. pumilio originating from the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S ribosomal RNA gene sequence showed a significant diversity of isolates belonging to families Rhizobiaceae (genus Rhizobium), Phyllobacteriaceae (genera Mesorhizobium, Phyllobacterium), and Bradyrhizobiaceae (genera Bosea, Tardiphaga). A plant nodulation assay showed that only strains belonging to genus Mesorhizobium could form nitrogen-fixing nodules on Oxytropis plants. The strains M. loti 582 and M. huakuii 583, in addition to symbiotic clusters, possessed genes of the type III and type VI secretion systems (T3SS and T6SS, respectively), which can influence the host specificity of strains. These strains formed nodules of two types (elongated and rounded) on O. kamtschatica roots. We suggest this phenomenon may result from Nod factor-dependent and -independent nodulation strategies. The obtained strains are of interest for further study of the T3SS and T6SS gene function and their role in the development of rhizobium-legume symbiosis. The prospects of using rhizobia having both gene systems related to symbiotic and nonsymbiotic nodulation strategies to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing nodulation efficiency are discussed.
Collapse
Affiliation(s)
- Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Polina V Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Anna L Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Irina G Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Valentin V Yakubov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, 690022, Vladivostok, Ave. 100-let Vladivostoka 159, Russian Federation
| | - Elizaveta R Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Alexey М Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan 420111, Russian Federation
| | - Evgeny E Andronov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St.-Petersburg, Sh. Podbelskogo 3, Russian Federation
- Saint Petersburg State University, Department of Genetics and Biotechnology, 199034, St.-Petersburg, Universitetskaya Emb. 7/9, Russian Federation
| |
Collapse
|
11
|
The name Bradyrhizobiaceae Garrity et al. 2006 contains Nitrobacter Winogradsky 1892 (Approved Lists 1980), the nomenclatural type of the family Nitrobacteraceae Buchanan 1917 (Approved Lists 1980), is illegitimate and proposals to alter the wording of Rule 54 of the International Code of Nomenclature of Prokaryotes to clarify the fact that the family name Bradyrhizobiaceae Garrity et al. 2006 is replaced by the family name Nitrobacteraceae Buchanan 1917 (Approved Lists 1980) the only correct name. Int J Syst Evol Microbiol 2019; 69:2609-2611. [DOI: 10.1099/ijsem.0.003253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
13
|
Taxonomic and Functional Diversity of a Quercus pyrenaica Willd. Rhizospheric Microbiome in the Mediterranean Mountains. FORESTS 2017. [DOI: 10.3390/f8100390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Syst Appl Microbiol 2017; 40:440-447. [PMID: 28869059 DOI: 10.1016/j.syapm.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Abstract
An assessment was made of the evolutionary relationships of soybean nodulating bacteria associated with legumes native to eastern Canada to identify potential new sources of soybean inoculant strains. Short season soybeans were used to selectively trap bacteria from root zone soils of four native legume species. Screening of more than 800 bacterial isolates from soybean root nodules by analysis of recA gene sequences followed by analyses of selected genotypes using six core and two symbiosis (nodC and nifH) gene sequences permitted identification of diverse taxa that included eight novel and four named Bradyrhizobium species as well as lineages attributed to the genera Afipia and Tardiphaga. Plant tests showed that symbionts related to four named species as well as a novel Bradyrhizobium lineage were highly efficient with regard to nitrogen fixation on soybeans relative to an inoculant strain. A new symbiovar (sv. septentrionalis) is proposed based on a group of four novel Bradyrhizobium spp. that possess distinctive nodC and nifH gene sequences and symbiotic characteristics. Evidence is provided for horizontal transfer of sv. septentrionalis symbiosis genes between novel Bradyrhizobium spp., a process that rendered recipient bacteria ineffective on soybeans. Diverse lineages of non-symbiotic and symbiotic Bradyrhizobium spp. co-occured within monophyletic clusters in a phylogenetic tree of concatenated core genes, suggesting that loss and/or gain of symbiosis genes has occurred in the evolutionary history of the bacterial genus. Our data suggest that symbiont populations associated with legumes native to eastern Canada harbour elite strains of Bradyrhizobium for soybean inoculation.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Thu Van Tran Thi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
15
|
Le Roux C, Tournier E, Lies A, Sanguin H, Chevalier G, Duponnois R, Mousain D, Prin Y. Bacteria of the genus Rhodopseudomonas (Bradyrhizobiaceae): obligate symbionts in mycelial cultures of the black truffles Tuber melanosporum and Tuber brumale. SPRINGERPLUS 2016; 5:1085. [PMID: 27468385 PMCID: PMC4947074 DOI: 10.1186/s40064-016-2756-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND This work aimed at characterizing 12 isolates of the genus Tuber including Tuber melanosporum (11 isolates) and Tuber brumale (one isolate). This was done using internal transcribed spacer (ITS) sequences, confirming their origin. RESULTS Analysis of their mating type revealed that both MAT1-1 and MAT1-2 exist within these isolates (with 3 and 8 of each, respectively). We observed that each of these cultures was consistently associated with one bacterium that was intimately linked to fungal growth. These bacterial associates failed to grow in the absence of fungus. We extracted DNA from bacterial colonies in the margin of mycelium and sequenced a nearly complete 16S rDNA gene and a partial ITS fragment. We found they all belonged to the genus Rhodopseudomonas, fitting within different phylogenetic clusters. No relationships were evidenced between bacterial and fungal strains or mating types. Rhodopseudomonas being a sister genus to Bradyrhizobium, we tested the nodulation ability of these bacteria on a promiscuously nodulating legume (Acacia mangium), without success. We failed to identify any nifH genes among these isolates, using two different sets of primers. CONCLUSIONS While the mechanisms of interaction between Tuber and Rhodopseudomonas remain to be elucidated, their interdependency for in vitro growth seems a novel feature of this fungus.
Collapse
Affiliation(s)
| | | | - Adrien Lies
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| | - Hervé Sanguin
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| | - Gérard Chevalier
- />INRA Centre de Recherche de Clermont-Theix, 63039 Clermont-Ferrand Cedex, France
| | | | - Daniel Mousain
- />Société d’Horticulture et d’Histoire Naturelle de l’Hérault, Parc à Ballon 1, bâtiment B, 125 rue du Moulin de Sémalen, 34000 Montpellier, France
| | - Yves Prin
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| |
Collapse
|
16
|
Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed. Arch Microbiol 2015; 197:889-98. [PMID: 26013968 DOI: 10.1007/s00203-015-1122-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Eleven extra-slow-growing strains were isolated from nodules of the relict legume Vavilovia formosa growing in North Ossetia (Caucasus) and Armenia. All isolates formed a single rrs cluster together with the type strain Tardiphaga robiniae LMG 26467(T), while the sequencing of the 16S-23S rDNA intergenic region (ITS) and housekeeping genes glnII, atpD, dnaK, gyrB, recA and rpoB divided them into three groups. North Ossetian isolates (in contrast to the Armenian ones) were clustered separately from the type strain LMG 26467(T). However, all isolates were classified as T. robiniae because the DNA-DNA relatedness between them and the type strain LMG 26467(T) was 69.6% minimum. Two symbiosis-related genes (nodM and nodT) were amplified in all isolated Tardiphaga strains. It was shown that the nodM gene phylogeny is similar to that of ITS and housekeeping genes. The presence of the other symbiosis-related genes in described Tardiphaga strains, which is recently described genus of rhizobia, as well as their ability to form nodules on any plants are under investigation.
Collapse
|
17
|
Kim KK, Lee KC, Eom MK, Kim JS, Kim DS, Ko SH, Kim BH, Lee JS. Variibacter gotjawalensis gen. nov., sp. nov., isolated from soil of a lava forest. Antonie van Leeuwenhoek 2014; 105:915-24. [PMID: 24599521 DOI: 10.1007/s10482-014-0146-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Abstract
A novel bacterial strain designated GJW-30(T) was isolated from soil of the lava forest, Gotjawal, located in Aewol, Jeju, Korea. Strain GJW-30(T) was found to be strictly aerobic, Gram-negative and to form pleomorphic, non-motile rods and white colonies on R2A agar. The major fatty acids were identified as C18:1ω7c, C16:0 and C17:0, the predominant isoprenoid quinone as Q-10, the polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified aminolipid and an unidentified lipid. The cell-wall sugar pattern of strain GJW-30(T) was found to be composed of glucose, ribose and rhamnose and meso-DAP as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content of strain GJW-30(T) is 62.2 mol%. Phylogenetic analysis, based on 16S rRNA gene sequence similarities, showed that strain GJW-30(T) forms a deep branch within the order Rhizobiales, sharing the highest level of sequence homology with Bradyrhizobium oligotrophicum LMG 10732(T) (93.6 %). On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain GJW-30(T) is considered to represent a novel genus and species, for which the name Variibacter gotjawalensis gen. nov., sp. nov. (the type strain is GJW-30(T) = KCTC 32391(T) = CECT 8514(T) = LMG 28093(T)) is proposed.
Collapse
Affiliation(s)
- Kwang Kyu Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012. [DOI: 10.1099/ijs.0.048033-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|