1
|
Font-Verdera F, Liébana R, Rossello-Mora R, Viver T. Impact of dilution on stochastically driven methanogenic microbial communities of hypersaline anoxic sediments. FEMS Microbiol Ecol 2023; 99:fiad146. [PMID: 37989854 PMCID: PMC10673710 DOI: 10.1093/femsec/fiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Sediments underlying the solar salterns of S'Avall are anoxic hypersaline ecosystems dominated by anaerobic prokaryotes, and with the especial relevance of putative methanogenic archaea. Slurries from salt-saturated sediments, diluted in a gradient of salinity and incubated for > 4 years revealed that salt concentration was the major selection force that deterministically structured microbial communities. The dominant archaea in the original communities showed a decrease in alpha diversity with dilution accompanied by the increase of bacterial alpha diversity, being highest at 5% salts. Correspondingly, methanogens decreased and in turn sulfate reducers increased with decreasing salt concentrations. Methanogens especially dominated at 25%. Different concentrations of litter of Posidonia oceanica seagrass added as a carbon substrate, did not promote any clear relevant effect. However, the addition of ampicillin as selection pressure exerted important effects on the assemblage probably due to the removal of competitors or enhancers. The amended antibiotic enhanced methanogenesis in the concentrations ≤ 15% of salts, whereas it was depleted at salinities ≥ 20% revealing key roles of ampicillin-sensitive bacteria.
Collapse
Affiliation(s)
- Francisca Font-Verdera
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
| | - Raquel Liébana
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
- AZTI, Basque Research Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, 48395 Sukarrieta, Bizkaia, Spain
| | - Ramon Rossello-Mora
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
| | - Tomeu Viver
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
2
|
Diloreto Z, Ahmad MS, Al Saad Al-Kuwari H, Sadooni F, Bontognali TRR, Dittrich M. Raman Spectroscopic and Microbial Study of Biofilms Hosted Gypsum Deposits in the Hypersaline Wetlands: Astrobiological Perspective. ASTROBIOLOGY 2023; 23:991-1005. [PMID: 37672713 DOI: 10.1089/ast.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gypsum (CaSO4·2H2O) has been identified at the surface of Mars, by both orbiters and rovers. Because gypsum mostly forms in the presence of liquid water as an essential element for sustaining microbial life and has a low porosity, which is ideal for preserving organic material, it is a promising target to look for signs of past microbial life. In this article, we studied organic matter preservation within gypsum that precipitates in a salt flat or a so-called coastal sabkha located in Qatar. Sabkha's ecosystem is considered a modern analog to evaporitic environments that may have existed on early Mars. We collected the sediment cores in the areas where gypsum is formed and performed DNA analysis to characterize the community of extremophilic microorganisms that is present at the site of gypsum formation. Subsequently, we applied Raman spectroscopy, a technique available on several rovers that are currently exploring Mars, to evaluate which organic molecules can be detected through the translucent gypsum crystals. We showed that organic material can be encapsulated into evaporitic gypsum and detected via Raman microscopy with simple, straightforward sample preparation. The molecular biology data proved useful for assessing to what extent complex Raman spectra can be linked to the original microbial community, dominated by Halobacteria and methanogenic archaea, providing a reference for a signal that may be detected on Mars.
Collapse
Affiliation(s)
- Zach Diloreto
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Mirza Shaharyar Ahmad
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | | | | | - Tomaso R R Bontognali
- Space Exploration Institute, Neuchâtel, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Hassani II, Quadri I, Yadav A, Bouchard S, Raoult D, Hacène H, Desnues C. Assessment of diversity of archaeal communities in Algerian chott. Extremophiles 2023; 27:2. [PMID: 36469177 DOI: 10.1007/s00792-022-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 103 CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.
Collapse
Affiliation(s)
- Imene Ikram Hassani
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria.
| | - Inès Quadri
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria
| | - Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sonia Bouchard
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Didier Raoult
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Hocine Hacène
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Biologie, USTHB Université, Bab Ezzouar, Algeria
| | - Christelle Desnues
- Faculté de Médecine, Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD 198, Inserm U1095, 27 Boulevard Jean Moulin, 13385, Marseille, France
| |
Collapse
|
4
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Font-Verdera F, Liébana R, Aldeguer-Riquelme B, Gangloff V, Santos F, Viver T, Rosselló-Móra R. Inverted microbial community stratification and spatial-temporal stability in hypersaline anaerobic sediments from the S'Avall solar salterns. Syst Appl Microbiol 2021; 44:126231. [PMID: 34332366 DOI: 10.1016/j.syapm.2021.126231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The anaerobic hypersaline sediments of an ephemeral pond from the S'Avall solar salterns constituted an excellent study system because of their easy accessibility, as well as the analogy of their microbial assemblages with some known deep-sea hypersaline anaerobic brines. By means of shotgun metagenomics and 16S rRNA gene amplicon sequencing, the microbial composition of the sediment was shown to be stable in time and space. The communities were formed by prokaryote representatives with a clear inferred anaerobic metabolism, mainly related to the methane, sulfur and nitrate cycles. The most conspicuous finding was the inverted nature of the vertical stratification. Contrarily to what could be expected, a methanogenic archaeal metabolism was found to dominate in the upper layers, whereas Bacteria with fermentative and anaerobic respiration metabolisms increased with depth. We could demonstrate the methanogenic nature of the members of candidate lineages DHVE2 and MSBL1, which were present in high abundance in this system, and described, for the first time, viruses infecting these lineages. Members of the putatively active aerobic genera Salinibacter and Halorubrum were detected especially in the deepest layers for which we hypothesize that either oxygen could be sporadically available, or they could perform anaerobic metabolisms. We also report a novel repertoire of virus species thriving in these sediments, which had special relevance because of their lysogenic lifestyles.
Collapse
Affiliation(s)
- Francisca Font-Verdera
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain.
| | - Raquel Liébana
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Valentin Gangloff
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| |
Collapse
|
6
|
Lamprecht-Grandío M, Cortesão M, Mirete S, de la Cámara MB, de Figueras CG, Pérez-Pantoja D, White JJ, Farías ME, Rosselló-Móra R, González-Pastor JE. Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Front Microbiol 2020; 11:453. [PMID: 32292392 PMCID: PMC7135895 DOI: 10.3389/fmicb.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.
Collapse
Affiliation(s)
| | - Marta Cortesão
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Joseph John White
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
7
|
Mora-Ruiz MDR, Cifuentes A, Font-Verdera F, Pérez-Fernández C, Farias ME, González B, Orfila A, Rosselló-Móra R. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Syst Appl Microbiol 2017; 41:139-150. [PMID: 29352612 DOI: 10.1016/j.syapm.2017.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023]
Abstract
Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms.
Collapse
Affiliation(s)
- M Del R Mora-Ruiz
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain.
| | - A Cifuentes
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - F Font-Verdera
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - C Pérez-Fernández
- Environmental Microbiology Laboratory, Puerto Rico University, Rio Piedras campus, Puerto Rico
| | - M E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - B González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez - Center of Applied Ecology and Sustainability, Santiago, Chile
| | - A Orfila
- Marine Technology and Operational Oceanography Department, IMEDEA (CSIC-UIB), Esporles, Spain
| | - R Rosselló-Móra
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| |
Collapse
|
8
|
Kumar SS, Malyan SK, Basu S, Bishnoi NR. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16019-16030. [PMID: 28537018 DOI: 10.1007/s11356-017-9112-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m3 and volumetric current density was 16.17 A/m3. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.
Collapse
Affiliation(s)
- Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sandeep K Malyan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
9
|
Mobberley JM, Lindemann SR, Bernstein HC, Moran JJ, Renslow RS, Babauta J, Hu D, Beyenal H, Nelson WC. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol Ecol 2017; 93:3071443. [PMID: 28334407 PMCID: PMC5812542 DOI: 10.1093/femsec/fix028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 02/06/2023] Open
Abstract
Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms; however, little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity and metabolic gradient measurements. Draft reconstructed genomes of 34 abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence on metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.
Collapse
Affiliation(s)
- Jennifer M Mobberley
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.,Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hans C Bernstein
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - James J Moran
- Chemical and Biological Signature Sciences, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ryan S Renslow
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Jerome Babauta
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - William C Nelson
- Biological Science Division, Earth and Environmental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
10
|
Preisner EC, Fichot EB, Norman RS. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance. Front Microbiol 2016; 7:1632. [PMID: 27799927 PMCID: PMC5066559 DOI: 10.3389/fmicb.2016.01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models.
Collapse
Affiliation(s)
| | | | - Robert S. Norman
- Department of Environmental Health Sciences, University of South Carolina, ColumbiaSC, USA
| |
Collapse
|
11
|
Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 2016; 7:1284. [PMID: 27597845 PMCID: PMC4992683 DOI: 10.3389/fmicb.2016.01284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.
Collapse
Affiliation(s)
- Ana B Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Maria C Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Pieter T Visscher
- Department of Marine Sciences, University of ConnecticutGroton, CT, USA; Australian Centre for Astrobiology, University of New South WalesSydney, NSW, Australia
| | | | | | - Daniel G Poire
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet La Plata, Argentina
| | - Molly M Patterson
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla Sevilla, Spain
| | - Maria E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| |
Collapse
|
12
|
Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, Kamanda Ngugi D, Göker M, Klenk HP, Bajic V, Stingl U. Metabolic traits of an uncultured archaeal lineage--MSBL1--from brine pools of the Red Sea. Sci Rep 2016; 6:19181. [PMID: 26758088 PMCID: PMC4725937 DOI: 10.1038/srep19181] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022] Open
Abstract
The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden-Meyerhof-Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available.
Collapse
Affiliation(s)
- Romano Mwirichia
- Red Sea Research Center, King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal,
Saudi Arabia
| | - Mamoon Rashid
- Red Sea Research Center, King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
| | - Wail Ba-Alawi
- Computational Bioscience Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal,
Saudi Arabia
| | - Allan Anthony Kamau
- Computational Bioscience Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal,
Saudi Arabia
| | - David Kamanda Ngugi
- Red Sea Research Center, King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
| | - Markus Göker
- German Collection for Microorganisms and Cell Cultures GmbH
(DSMZ), Inhoffenstraße 7b, 38124
Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle
upon Tyne, United Kingdom
| | - Vladimir Bajic
- Computational Bioscience Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal,
Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Wong HL, Ahmed-Cox A, Burns BP. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions. Microorganisms 2016; 4:microorganisms4010006. [PMID: 27681900 PMCID: PMC5029511 DOI: 10.3390/microorganisms4010006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| | - Aria Ahmed-Cox
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
14
|
Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M, de Figueras CG, Rosselló-Móra R, González-Pastor JE. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 2015; 6:1121. [PMID: 26528268 PMCID: PMC4602150 DOI: 10.3389/fmicb.2015.01121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.
Collapse
Affiliation(s)
- Salvador Mirete
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas - Instituto Nacional de Técnica Aeroespacial, Madrid Spain
| | - Merit R Mora-Ruiz
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, Consejo Superior de Investigaciones Científicas - Universidad de las Islas Baleares, Esporles Spain
| | - María Lamprecht-Grandío
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas - Instituto Nacional de Técnica Aeroespacial, Madrid Spain
| | - Carolina G de Figueras
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas - Instituto Nacional de Técnica Aeroespacial, Madrid Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, Consejo Superior de Investigaciones Científicas - Universidad de las Islas Baleares, Esporles Spain
| | - José E González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología, Consejo Superior de Investigaciones Científicas - Instituto Nacional de Técnica Aeroespacial, Madrid Spain
| |
Collapse
|
16
|
Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015; 25:80-7. [PMID: 26056770 DOI: 10.1016/j.mib.2015.05.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Recent studies based on metagenomics and other molecular techniques have permitted a detailed knowledge of the microbial diversity and metabolic activities of microorganisms in hypersaline environments. The current accepted model of community structure in hypersaline environments is that the square archaeon Haloquadratum waslbyi, the bacteroidete Salinibacter ruber and nanohaloarchaea are predominant members at higher salt concentrations, while more diverse archaeal and bacterial taxa are observed in habitats with intermediate salinities. Additionally, metagenomic studies may provide insight into the isolation and characterization of the principal microbes in these habitats, such as the recently described gammaproteobacterium Spiribacter salinus.
Collapse
Affiliation(s)
- Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 06269 Storrs, CT, USA
| |
Collapse
|
17
|
Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R. Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: Evidence that unexplored sites constitute sources of cultivable novelty. Syst Appl Microbiol 2015; 38:266-75. [DOI: 10.1016/j.syapm.2015.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
|
18
|
Oren A. Halophilic microbial communities and their environments. Curr Opin Biotechnol 2015; 33:119-24. [PMID: 25727188 DOI: 10.1016/j.copbio.2015.02.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/04/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Use of culture-independent studies have greatly increased our understanding of the microbiology of hypersaline lakes (the Dead Sea, Great Salt Lake) and saltern ponds in recent years. Exciting new information has become available on the microbial processes in Antarctic lakes and in deep-sea brines. These studies led to the recognition of many new lineages of microorganisms not yet available for study in culture, and their cultivation in the laboratory is now a major challenge. Studies of the metabolic potentials of different halophilic microorganisms, Archaea as well as Bacteria, shed light on the possibilities and the limitations of life at high salt concentrations, and also show their potential for applications in bioremediation.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
19
|
Sorokin DY, Abbas B, Geleijnse M, Pimenov NV, Sukhacheva MV, van Loosdrecht MCM. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 2015; 91:fiv016. [PMID: 25764464 DOI: 10.1093/femsec/fiv016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial methanogenesis at extreme conditions of saline alkaline soda lakes has, so far, been poorly investigated. Despite the obvious domination of sulfidogenesis as the therminal anaerobic process in the hypersaline soda lakes of Kulunda Steppe (Altai, southwestern Siberia), high concentrations of methane were detected in the anaerobic sediments. Potential activity measurements with different substrates gave results significantly deviating from what is commonly found in hypersaline habitats with neutral pH. In particular, not only a non-competitive methylotrophic pathway was active, but also lithotrophic and, in some cases, even acetate-dependent methanogenesis was found to be present in hypersaline soda lake sediments. All three pathways were functioning exclusively within the alkaline pH range between 8 and 10.5, while the salt concentration was the key factor influencing the activity. Methylotrophic and, to a lesser extent, lithotrophic methanogenesis were active up to soda-saturating conditions (4 M total Na(+)). Acetate-dependent methanogenesis was observed at salinities below 3 M total Na(+). Detection of methanogens in sediments using the mcrA gene as a functional marker demonstrated domination of methylotrophic genera Methanolobus and Methanosalsum and lithotrophic Methanocalculus. In a few cases, acetoclastic Methanosaeta was detected, as well as two deep lineage methanogens. Cultivation results corresponded well to the mcrA-based observations. Enrichments for natronophilic methylotrophic methanogens resulted in isolation of Methanolobus strains at moderate salinity, while at salt concentrations above 2 M Na(+) a novel member of the genus Methanosalsum was dominating. Enrichments with H2 or formate invariably resulted in domination of close relatives of Methanocalculus natronophilus. Enrichments with acetate at low salt concentration yielded two acetoclastic alkaliphilic Methanosaeta cultures, while at salinity above 1 M Na(+) syntrophic associations were apparently responsible for the observed acetate conversion to methane. Overall, the results indicated the presence of functionally structured and active methanogenic populations in Siberian hypersaline soda lakes.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Mitchell Geleijnse
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Marina V Sukhacheva
- Centre Bioengineering, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/1, 117312 Moscow, Russia
| | | |
Collapse
|
20
|
Thomas C, Ionescu D, Ariztegui D. Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea. Mar Genomics 2014; 17:53-62. [PMID: 25224966 DOI: 10.1016/j.margen.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
Abstract
Archaeal metabolism was studied in aragonitic and gypsum facies of the Dead Sea subsurface using high-throughput DNA sequencing. We show that the communities are well adapted to the peculiar environment of the Dead Sea subsurface. They harbor the necessary genes to deal with osmotic pressure using high- and low-salt-in strategies, and to cope with unusually high concentrations of heavy metals. Methanogenesis was identified for the first time in the Dead Sea and appears to be an important metabolism in the aragonite sediment. Fermentation of residual organic matter, probably performed by some members of the Halobacteria class is common to both types of sediments. The latter group represents more than 95% of the taxonomically identifiable Archaea in the metagenome of the gypsum sediment. The potential for sulfur reduction has also been revealed and is associated in the sediment with EPS degradation and Fe-S mineralization as revealed by SEM imaging. Overall, we show that distinct communities of Archaea are associated with the two different facies of the Dead Sea, and are adapted to the harsh chemistry of its subsurface, in different ways.
Collapse
Affiliation(s)
- C Thomas
- Department of Earth Sciences, University of Geneva, Switzerland.
| | - D Ionescu
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D Ariztegui
- Department of Earth Sciences, University of Geneva, Switzerland
| | | |
Collapse
|
21
|
Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, Borghini M, Monticelli LS, Rojo D, Barbas C, Golyshina OV, Ferrer M, Golyshin PN, Giuliano L. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 2013; 3:3554. [PMID: 24352146 PMCID: PMC3867751 DOI: 10.1038/srep03554] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/03/2013] [Indexed: 11/25/2022] Open
Abstract
Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [14C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.
Collapse
Affiliation(s)
- Michail M Yakimov
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2]
| | - Violetta La Cono
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2]
| | - Vladlen Z Slepak
- 1] Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136 [2]
| | - Gina La Spada
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Erika Arcadi
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Mireno Borghini
- Institute for Marine Sciences, ISMAR-CNR, Forte S.Teresa, 19136 Pozzuolo di Lerici, La Spezia, Italy
| | - Luis S Monticelli
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - David Rojo
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis, University CEU San Pablo, Boadilla del Monte, 28668 Madrid, Spain
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd LL57 2UW, UK
| | - Manuel Ferrer
- 1] Institute of Catalysis, CSIC, Marie Curie 2, 28049 Madrid, Spain [2]
| | - Peter N Golyshin
- 1] School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd LL57 2UW, UK [2]
| | - Laura Giuliano
- 1] Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy [2] Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco
| |
Collapse
|