1
|
Anderson MD, Taylor DL, Olson K, Ruess RW. Composition of soil Frankia assemblages across ecological drivers parallels that of nodule assemblages in Alnus incana ssp. tenuifolia in interior Alaska. Ecol Evol 2024; 14:e11458. [PMID: 38979008 PMCID: PMC11229434 DOI: 10.1002/ece3.11458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 07/10/2024] Open
Abstract
In root nodule symbioses (RNS) between nitrogen (N)-fixing bacteria and plants, bacterial symbionts cycle between nodule-inhabiting and soil-inhabiting niches that exert differential selection pressures on bacterial traits. Little is known about how the resulting evolutionary tension between host plants and symbiotic bacteria structures naturally occurring bacterial assemblages in soils. We used DNA cloning to examine soil-dwelling assemblages of the actinorhizal symbiont Frankia in sites with long-term stable assemblages in Alnus incana ssp. tenuifolia nodules. We compared: (1) phylogenetic diversity of Frankia in soil versus nodules, (2) change in Frankia assemblages in soil versus nodules in response to environmental variation: both across succession, and in response to long-term fertilization with N and phosphorus, and (3) soil assemblages in the presence and absence of host plants. Phylogenetic diversity was much greater in soil-dwelling than nodule-dwelling assemblages and fell into two large clades not previously observed. The presence of host plants was associated with enhanced representation of genotypes specific to A. tenuifolia, and decreased representation of genotypes specific to a second Alnus species. The relative proportion of symbiotic sequence groups across a primary chronosequence was similar in both soil and nodule assemblages. Contrary to expectations, both N and P enhanced symbiotic genotypes relative to non-symbiotic ones. Our results provide a rare set of field observations against which predictions from theoretical and experimental work in the evolutionary ecology of RNS can be compared.
Collapse
Affiliation(s)
- M. D. Anderson
- Biology DepartmentMacalester CollegeSaint PaulMinnesotaUSA
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - D. L. Taylor
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - K. Olson
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - R. W. Ruess
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| |
Collapse
|
2
|
Vemulapally S, Guerra T, Hahn D. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules. FEMS Microbiol Ecol 2022; 98:6529231. [PMID: 35170731 DOI: 10.1093/femsec/fiac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of host plants on the abundance and distribution of introduced and indigenous Frankia populations was assessed in soils and root nodules of four alder species, Alnus glutinosa, Alnus cordata, Alnus rubra and Alnus viridis. Plants were grown in microcosms with either a sandy soil without detectable frankiae, with or without inoculation of a mixture of Frankia isolates, or with a silty clay loam soil with indigenous Frankia. The presence of frankiae in soils increased plant height and root nodule formation, with significant increases in the presence of indigenous frankiae. Abundance in soils increased significantly for both introduced and indigenous Frankia populations independent of alder species, with generally largest increases in cluster 1b frankiae. Root nodules formed by introduced frankiae did not reflect the diversity of strains inoculated, with nodules generally only formed by strain ArI3 representing cluster 1a/d. All indigenous Frankia populations detected in soil were also found in A. glutinosa nodules, while A. cordata or A. rubra nodules contained different subsets of frankiae with unique abundances dependent on plant species. These results demonstrate the intrageneric differences of host plants in the selection of specific Frankia populations in soils for root nodule formation.
Collapse
Affiliation(s)
- Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
3
|
Carlos-Shanley C, Guerra T, Hahn D. Draft genomes of non-nitrogen-fixing Frankia strains. J Genomics 2021; 9:68-75. [PMID: 34703504 PMCID: PMC8542509 DOI: 10.7150/jgen.65429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we describe the genomes of two novel candidate species of non-nitrogen fixing Frankia that were isolated from the root nodules of Coriaria nepalensis and Alnus glutinosa, genospecies CN and Ag, respectively. Comparative genomic analyses revealed that both genospecies lack genes essential for nitrogen-fixation and possess genes involved in the degradation of plant cell walls. Additionally, we found distinct biosynthetic gene clusters in each genospecies. The availability of these genomes will contribute to the study of the taxonomy and evolution of actinorhizal symbioses.
Collapse
Affiliation(s)
- Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
4
|
In Planta Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions. Appl Environ Microbiol 2018; 84:AEM.01737-18. [PMID: 30217853 DOI: 10.1128/aem.01737-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
The Alnus genus forms symbiosis with the actinobacteria Frankia spp. and ectomycorrhizal fungi. Two types of Frankia lineages can be distinguished based on their ability to sporulate in planta Spore-positive (Sp+) strains are predominant on Alnus incana and Alnus viridis in highlands, while spore-negative (Sp-) strains are mainly associated with Alnus glutinosa in lowlands. Here, we investigated whether the Sp+ predominance in nodules is due to host selection of certain Frankia genotypes from soil communities or the result of the ecological history of the alder stand soil, as well as the effect of the sporulation genotype on the ectomycorrhizal (ECM) communities. Trapping experiments were conducted using A. glutinosa, A. incana, and A. viridis plantlets on 6 soils, differing in the alder species and the frequency of Sp+ nodules in the field. Higher diversity of Frankia spp. and variation in Sp+ frequencies were observed in the trapping than in the fields. Both indigenous and trapping species shape Frankia community structure in trapped nodules. Nodulation impediments were observed under several trapping conditions in Sp+ soils, supporting a narrower host range of Sp+ Frankia species. A. incana and A. viridis were able to associate equally with compatible Sp+ and Sp- strains in the greenhouse. Additionally, no host shift was observed for Alnus-specific ECM, and the sporulation genotype of Frankia spp. defined the ECM communities on the host roots. The symbiotic association is likely determined by the host range, the soil history, and the type of in planta Frankia species. These results provide an insight into the biogeographical drivers of alder symbionts in the Holarctic region.IMPORTANCE Most Frankia-actinorhiza plant symbioses are capable of high rates of nitrogen fixation comparable to those found on legumes. Yet, our understanding of the ecology and distribution of Frankia spp. is still very limited. Several studies have focused on the distribution patterns of Frankia spp., demonstrating a combination of host and pedoclimatic parameters in their biogeography. However, very few have considered the in planta sporulation form of the strain, although it is a unique feature among all symbiotic plant-associated microbes. Compared with Sp- Frankia strains, Sp+ strains would be obligate symbionts that are highly dependent on the presence of a compatible host species and with lower efficiency in nitrogen fixation. Understanding the biogeographical drivers of Sp+ Frankia strains might help elucidate the ecological role of in planta sporulation and the extent to which this trait mediates host-partner interactions in the alder-Frankia-ECM fungal symbiosis.
Collapse
|
5
|
Arancibia NB, Solans M, Mestre MC, Chaia EE. Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina. Symbiosis 2018. [DOI: 10.1007/s13199-018-0538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils. Appl Environ Microbiol 2018; 84:AEM.02248-17. [PMID: 29247058 DOI: 10.1128/aem.02248-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022] Open
Abstract
Actinorhizal plants form nitrogen-fixing root nodules in symbiosis with soil-dwelling actinobacteria within the genus Frankia, and specific Frankia taxonomic clusters nodulate plants in corresponding host infection groups. In same-soil microcosms, we observed that some host species were nodulated (Alnus glutinosa, Alnus cordata, Shepherdia argentea, Casuarina equisetifolia) while others were not (Alnus viridis, Hippophaë rhamnoides). Nodule populations were represented by eight different sequences of nifH gene fragments. Two of these sequences characterized frankiae in S. argentea nodules, and three others characterized frankiae in A. glutinosa nodules. Frankiae in A. cordata nodules were represented by five sequences, one of which was also found in nodules from A. glutinosa and C. equisetifolia, while another was detected in nodules from A. glutinosa Quantitative PCR assays showed that vegetation generally increased the abundance of frankiae in soil, independently of the target gene (i.e., nifH or the 23S rRNA gene). Targeted Illumina sequencing of Frankia-specific nifH gene fragments detected 24 unique sequences from rhizosphere soils, 4 of which were also found in nodules, while the remaining 4 sequences in nodules were not found in soils. Seven of the 24 sequences from soils represented >90% of the reads obtained in most samples; the 2 most abundant sequences from soils were not found in root nodules, and only 2 of the sequences from soils were detected in nodules. These results demonstrate large differences between detectable Frankia populations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specific Frankia populations in soils.IMPORTANCE The nitrogen-fixing actinobacterium Frankia forms root nodules on actinorhizal plants, with members of specific Frankia taxonomic clusters nodulating plants in corresponding host infection groups. We assessed Frankia diversity in root nodules of different host plant species, and we related specific populations to the abundance and relative distribution of indigenous frankiae in rhizosphere soils. Large differences were observed between detectable Frankia populations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specific Frankia populations in soils but rather results from plants potentially selecting frankiae from the soil for root nodule formation. These data also highlight the necessity of using a combination of different assessment tools so as to adequately address methodological constraints that could produce contradictory data sets.
Collapse
|
7
|
Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 2018; 8:2605. [PMID: 29422490 PMCID: PMC5805725 DOI: 10.1038/s41598-018-21030-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.
Collapse
|
8
|
Schwob G, Roy M, Manzi S, Pommier T, Fernandez MP. Green alder (
Alnus viridis
) encroachment shapes microbial communities in subalpine soils and impacts its bacterial or fungal symbionts differently. Environ Microbiol 2017; 19:3235-3250. [DOI: 10.1111/1462-2920.13818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- G. Schwob
- CNRS, UMR 5557, INRA, UMR 1418, Laboratoire d'Ecologie MicrobienneUniversité de Lyon, Université Lyon143, Boulevard du 11 novembre 1918Villeurbanne Cedex 69622 France
| | - M. Roy
- Laboratoire Evolution et Diversité BiologiqueUMR 5174 UPS CNRS ENFA IRDToulouse France
| | - S. Manzi
- Laboratoire Evolution et Diversité BiologiqueUMR 5174 UPS CNRS ENFA IRDToulouse France
| | - T. Pommier
- CNRS, UMR 5557, INRA, UMR 1418, Laboratoire d'Ecologie MicrobienneUniversité de Lyon, Université Lyon143, Boulevard du 11 novembre 1918Villeurbanne Cedex 69622 France
| | - M. P. Fernandez
- CNRS, UMR 5557, INRA, UMR 1418, Laboratoire d'Ecologie MicrobienneUniversité de Lyon, Université Lyon143, Boulevard du 11 novembre 1918Villeurbanne Cedex 69622 France
| |
Collapse
|
9
|
Ben Tekaya S, Ganesan AS, Guerra T, Dawson JO, Forstner MRJ, Hahn D. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils. Appl Environ Microbiol 2017; 83:e02833-16. [PMID: 27986724 PMCID: PMC5311412 DOI: 10.1128/aem.02833-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
The nodule-forming actinobacterial genus Frankia can generally be divided into 4 taxonomic clusters, with clusters 1, 2, and 3 representing nitrogen-fixing strains of different host infection groups and cluster 4 representing atypical, generally non-nitrogen-fixing strains. Recently, quantitative PCR (qPCR)-based quantification methods have been developed for frankiae of clusters 1 and 3; however, similar approaches for clusters 2 and 4 were missing. We amended a database of partial 23S rRNA gene sequences of Frankia strains belonging to clusters 1 and 3 with sequences of frankiae representing clusters 2 and 4. The alignment allowed us to design primers and probes for the specific detection and quantification of these Frankia clusters by either Sybr Green- or TaqMan-based qPCR. Analyses of frankiae in different soils, all obtained from the same region in Illinois, USA, provided similar results, independent of the qPCR method applied, with abundance estimates of 10 × 105 to 15 × 105 cells (g soil)-1 depending on the soil. Diversity was higher in prairie soils (native, restored, and cultivated), with frankiae of all 4 clusters detected and those of cluster 4 dominating, while diversity in soils under Alnus glutinosa, a host plant for cluster 1 frankiae, or Betula nigra, a related nonhost plant, was restricted to cluster 1 and 3 frankiae and generally members of subgroup 1b were dominating. These results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees.IMPORTANCE Root nodule formation by the actinobacterium Frankia is host plant specific and largely, but not exclusively, correlates with assignments of strains to specific clusters within the genus. Due to the lack of adequate detection and quantification tools, studies on Frankia have been limited to clusters 1 and 3 and generally excluded clusters 2 and 4. We have developed tools for the detection and quantification of clusters 2 and 4, which can now be used in combination with those developed for clusters 1 and 3 to retrieve information on the ecology of all clusters delineated within the genus Frankia Our initial results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees.
Collapse
Affiliation(s)
| | | | - Trina Guerra
- Texas State University, Department of Biology, San Marcos, Texas, USA
| | - Jeffrey O Dawson
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Urbana, Illinois, USA
| | | | - Dittmar Hahn
- Texas State University, Department of Biology, San Marcos, Texas, USA
| |
Collapse
|
10
|
The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil. Appl Environ Microbiol 2016; 83:AEM.02661-16. [PMID: 27795313 DOI: 10.1128/aem.02661-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp.
Collapse
|
11
|
Rodriguez D, Guerra TM, Forstner MR, Hahn D. Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments. Syst Appl Microbiol 2016; 39:391-7. [DOI: 10.1016/j.syapm.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 02/02/2023]
|