1
|
Lawhon SD, Burbick CR, Krueger T, Ruiz-Reyes E, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from domestic companion and agricultural animals described in 2023. J Clin Microbiol 2024; 62:e0104124. [PMID: 39495011 PMCID: PMC11633096 DOI: 10.1128/jcm.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
With the proliferation of abundant bacterial genomic data comes the recognition of new organisms as well as a better understanding of the relatedness of known bacteria. Recognizing the associated taxonomic changes enhances communication and understanding about the significance of novel organisms and deeper understanding of known pathogens. This review addresses the addition of multiple gastrointestinal bacteria that form the normal microbiota in a variety of animals including honeybees as well as novel bacteria from domestic animals including an alpha-hemolytic Streptococcus species from guinea pigs, two Moraxella spp. from cows and goats, a new Capnocytophaga species from cats, a thermophilic Campylobacter species from pigs, and the new Exercitatus genus in Family Pasteurellaceae. Several revisions to the nomenclature also appeared in 2023 including the change of Clostridium spiroforme, which causes anorexia and diarrhea in domestic rabbits, to Thomasclavelia spiroformis comb. nov. and Mannheimia ovis to Mannheimia pernigra.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Trinity Krueger
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elena Ruiz-Reyes
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Li Y, Wang Y, Xiao D, Wang J, Jin D. The identification of Finegoldia dalianensis sp. nov., isolated from the pus of a patient with skin abscess and genomic analysis of the strains belonging to Finegoldia genus. Anaerobe 2024; 90:102913. [PMID: 39343356 DOI: 10.1016/j.anaerobe.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To comprehensively characterize a new species, named Finegoldia dalianensis sp. nov., isolated from the pus of a skin abscess from a patient and genomic analysis of the strains belonging to the Finegoldia genus. METHODS Strain LY240594T was definitively characterized through phylogenetic, genomic, and biochemical approach. Extensive genomic comparisons, involving the genome of LY240594T and those of 82 Finegoldia strains from GenBank, were instrumental in revealing genetic relationships within the Finegoldia genus. RESULTS Strain LY240594 was initially identified as F. magna based on MALDI-TOF MS analysis, showing 99.7 % 16S rRNA gene sequences similarity with the type strain of F. magna CCUG 17636T. However, there was 68.5 % similarity with dDDH method and 90.9 % similarity by ANI analysis respectively, between LY240594T and the selected type strain, F. magna DSM 20470T. Biochemical differences were also found between two strains. The ANI and genomic analysis of 82 Finegoldia sp. strains and Strain LY240594 revealed that those strains could be categorized into at least three groups using a 95 % ANI threshold. CONCLUSION Comprehensive characterization supported the proposal of a new species within the genus Finegoldia, named Finegoldia dalianensis sp. nov. The type strain, LY240594T (=GDMCC 1.4375T = KCTC 25838T), features 1938 genes and a G + C content of 31.8 mol%. Genomic comparisons and ANI studies elucidated substantial heterogeneity within the Finegoldia genus.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Yan Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China
| | - Jing Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China.
| | - Dong Jin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China; Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, 050011, China.
| |
Collapse
|
3
|
Taylor E, Deeney A, Birch C, Mayne G, Ridley A. Comparison of DNA extraction procedures for detection of Mycoplasma bovis directly from extended bovine semen straw samples using a commercial M. bovis PCR. BMC Vet Res 2024; 20:491. [PMID: 39462362 PMCID: PMC11515183 DOI: 10.1186/s12917-024-04333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Mycoplasma bovis is a global pathogen of cattle but was detected for the first time in New Zealand in 2017, triggering a response under their Biosecurity Act as an "unwanted organism". Following a lengthy eradication campaign, the Ministry of Primary Industries (MPI) now requires all bovine semen destined for export to New Zealand to be screened with an M. bovis-specific real-time PCR (rtPCR) compliant with amended import health standard (IHS) test requirements aimed at preventing the accidental importation of M. bovis. The standard stipulates that semen samples cannot be centrifuged prior to DNA extraction. To comply with these strict requirements, one of the listed tests was validated together with different DNA preparation steps and compared with existing in-house procedures. DNA was extracted from semen straws using the current in-house semi-automated platform procedures for processing culture, tissue and body fluid sample submissions and was compared with the stipulated test requirements. DNA from centrifuged and unspun semen samples spiked with M. bovis was also compared. RESULTS The rtPCR had a sensitivity and specificity of 100% (95% confidence interval = 79-100% and 74-100%, respectively) when testing DNA from other Mycoplasma species or bovine semen spiked with the latter, with a high level of repeatability for within- and between- run replicates. The consistent limit of detection was 0.001 pg/µl M. bovis DNA and between 5.3 × 102 and 7.5 × 102 CFU/ml M. bovis when artificially spiked in semen. DNA extracted using the KingFisher Flex was detected with lower Cq values than the Maxwell 16, but the comparable improvements in sensitivity were mainly associated with non-centrifuged samples (p < 0.001). None of the procedures tested impeded the detection sensitivity of M. bovis in the presence of competitor organisms Acholeplasma laidlawii, Mycoplasma bovigenitalium and Ureaplasma diversum, confirming M. bovis specificity of the polC target. CONCLUSIONS Under the experimental conditions applied, this rtPCR test efficiently detected M. bovis in extended bovine semen straw samples from DNA extracted using both semi-automated extraction platforms, irrespective of prior centrifugation of extended semen.
Collapse
Affiliation(s)
- Emma Taylor
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Alannah Deeney
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Colin Birch
- Department of Epidemiological Sciences, WOAH Collaborating Centre for Risk Analysis and Modelling, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Georgia Mayne
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Anne Ridley
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
4
|
Lawhon SD, Burbick CR, Munson E, Thelen E, Zapp A, Wilson A. Update on novel validly published taxa of bacteria isolated from domestic animals described in 2022. J Clin Microbiol 2023; 61:e0083923. [PMID: 37889054 PMCID: PMC10729710 DOI: 10.1128/jcm.00839-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Expansion of our knowledge of the microbial world continues to progress at a rapid rate and carries with it an associated need for recognizing and understanding the implications of those changes. Here, we describe additions of novel taxa from domestic animals published in 2022 that are validly published per the International Code of Nomenclature of Prokaryotes. These included new members of Staphylococcaceae, Moraxella nasovis sp. nov. in sheep with respiratory disease, three additions to Campylobacteraceae (including one from chickens with spotty liver disease), and multiple additions of organisms from the microbiota of dogs, pigs, and especially honeybees and other important pollinators. Noteworthy additions were associated with diseases of cattle, including mastitis, endocarditis, orchitis, and endometritis. Also described in 2022 was Pseudochrobactrum algeriense sp. nov., a member of the Brucellaceae family, isolated from the mammary lymph nodes of cows.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Anastasia Wilson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Ramírez AS, Poveda JB, Dijkman R, Poveda C, Suárez-Pérez A, Rosales RS, Feberwee A, Szostak MP, Ressel L, Viver T, Calabuig P, Catania S, Gobbo F, Timofte D, Spergser J. Mycoplasma bradburyae sp. nov. isolated from the trachea of sea birds. Syst Appl Microbiol 2023; 46:126472. [PMID: 37839385 DOI: 10.1016/j.syapm.2023.126472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
In the search for mollicutes in wild birds, six Mycoplasma strains were isolated from tracheal swabs taken from four different species of seabirds. Four strains originated from three Yellow-legged gulls (Larus michahellis) and a Cory's shearwater (Calonectris borealis) from Spain, one from a South African Kelp gull (Larus dominicanus), and one from an Italian Black-headed gull (Chroicocephalus ridibundus). These Mycoplasma strains presented 99 % 16S rRNA gene sequence similarity values with Mycoplasma (M.) gallisepticum. Phylogenetic analyses of marker genes (16S rRNA gene and rpoB) confirmed the close relationship of the strains to M. gallisepticum and M. tullyi. The seabirds' strains grew well in modified Hayflick medium, and colonies showed typical fried egg morphology. They produced acid from glucose and mannose but did not hydrolyze arginine or urea. Transmission electron microscopy revealed a cell morphology characteristic of mycoplasmas, presenting spherical to flask-shaped cells with an attachment organelle. Gliding motility was also observed. Furthermore, serological tests, MALDI-ToF mass spectrometry and genomic studies demonstrated that the strains were different to any known Mycoplasma species, for which the name Mycoplasma bradburyae sp. nov. is proposed; the type strain is T158T (DSM 110708 = NCTC 14398).
Collapse
Affiliation(s)
- Ana S Ramírez
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - José B Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain.
| | - Remco Dijkman
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| | - Carlos Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Alejandro Suárez-Pérez
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Rubén S Rosales
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Anneke Feberwee
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Lorenzo Ressel
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| | - Pascual Calabuig
- Centro de Recuperación de Fauna Silvestre, Cabildo de Gran Canaria, Spain
| | - Salvatore Catania
- Mycoplasma Unit - SCT1-Verona, WOAH Reference Laboratory for Avian Mycoplasmosis, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra (VR), Italy
| | - Federica Gobbo
- Mycoplasma Unit - SCT1-Verona, WOAH Reference Laboratory for Avian Mycoplasmosis, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra (VR), Italy
| | - Dorina Timofte
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
6
|
Baby V, Ambroset C, Gaurivaud P, Falquet L, Boury C, Guichoux E, Jores J, Lartigue C, Tardy F, Sirand-Pugnet P. Comparative genomics of Mycoplasma feriruminatoris, a fast-growing pathogen of wild Caprinae. Microb Genom 2023; 9:001112. [PMID: 37823548 PMCID: PMC10634449 DOI: 10.1099/mgen.0.001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24 % G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.
Collapse
Affiliation(s)
- Vincent Baby
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
- Present address: CDVUM, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Chloé Ambroset
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Patrice Gaurivaud
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, CH-1700 Fribourg, Switzerland
| | | | - Erwan Guichoux
- Université de Bordeaux, INRAE, BIOGECO, 33610 Cestas, France
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Carole Lartigue
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Florence Tardy
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
- Present address: Mycoplasmology, Bacteriology and Antibioresistance Unit, Laboratoire Anses Ploufragan Plouzané Niort, BP 53, 31 rue des fusillés, F-22440 Ploufragan, France
| | | |
Collapse
|
7
|
Aziz T, Naveed M, Jabeen K, Shabbir MA, Sarwar A, Zhennai Y, Alharbi M, Alshammari A, Alasmari AF. Integrated genome based evaluation of safety and probiotic characteristics of Lactiplantibacillus plantarum YW11 isolated from Tibetan kefir. Front Microbiol 2023; 14:1157615. [PMID: 37152722 PMCID: PMC10158936 DOI: 10.3389/fmicb.2023.1157615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
The comparative genomic analysis of Lactiplantibacillus plantarum YW11 (L. plantarum YW11) isolated from Tibetan kefir involves comparison of the complete genome sequences of the isolated strain with other closely related L. plantarum strains. This type of analysis can be used to identify the genetic diversity among strains and to explore the genetic characteristics of the YW11 strain. The genome of L. plantarum YW11 was found to be composed of a circular single chromosome of 4,597,470 bp with a G + C content of 43.2%. A total of 4,278 open reading frames (ORFs) were identified in the genome and the coding density was found to be 87.8%. A comparative genomic analysis was conducted using two other L. plantarum strains, L. plantarum C11 and L. plantarum LMG21703. Genomic comparison revealed that L. plantarum YW11 shared 72.7 and 75.2% of gene content with L. plantarum C11 and L. plantarum LMG21703, respectively. Most of the genes shared between the three L. plantarum strains were involved in carbohydrate metabolism, energy production and conversion, amino acid metabolism, and transcription. In this analysis, 10 previously sequenced entire genomes of the species were compared using an in-silico technique to discover genomic divergence in genes linked with carbohydrate intake and their potential adaptations to distinct human intestinal environments. The subspecies pan-genome was open, which correlated with its extraordinary capacity to colonize several environments. Phylogenetic analysis revealed that the novel genomes were homogenously grouped among subspecies of l Lactiplantibacillus. L. plantarum was resistant to cefoxitin, erythromycin, and metronidazole, inhibited pathogens including Listeria monocytogenes, Clostridium difficile, Vibrio cholera, and others, and had excellent aerotolerance, which is useful for industrial operations. The comparative genomic analysis of L. plantarum YW11 isolated from Tibetan kefir can provide insights into the genetic characteristics of the strain, which can be used to further understand its role in the production of kefir.
Collapse
Affiliation(s)
- Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- Department of Agriculture, University of Ioannina, Ioannina, Greece
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yang Zhennai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- *Correspondence: Yang Zhennai,
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Oren A, Garrity G. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2022; 72. [PMID: 35647792 DOI: 10.1099/ijsem.0.005331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|