1
|
Prokofeva MI, Elcheninov AG, Klyukina AA, Novikov AA, Kachmazov GS, Toshchakov SV, Frolov EN, Podosokorskaya OA. Anaeroselena agilis gen. nov., sp. nov., a Novel Sulfite- and Arsenate-Respiring Bacterium Within the Family Acetonemataceae Isolated from a Thermal Spring of North Ossetia. Curr Microbiol 2025; 82:71. [PMID: 39757269 DOI: 10.1007/s00284-024-04046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-clT, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-clT grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.3%) and within pH range 4.0-8.7 (optimum pH 6.8-7.3). It was a strictly anaerobic microorganism capable of fermentation and respiration on organic acids and proteinaceous substrates. Sulfur, sulfite, polysulfide, and arsenate were used as electron acceptors. In addition to heterotrophic growth it grew autotrophically with H2/CO2. The major fatty acids were C16:1 ω8c and C16:0. The size of the genome and genomic DNA G+C content of strain 4137-clT were 4.5 Mb and 59.2%, respectively. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 4137-clT represented a distinct lineage of the family Acetonemataceae within the class Negativicutes. As inferred from the morphology, physiology, chemotaxonomical and phylogenomic analyses, strain 4137-clT ought to be recognized as a novel genus for which the name Anaeroselena agilis gen. nov., sp. nov., we propose. The type strain is 4137-clT(=KCTC 25383T = VKM B-3575T).
Collapse
Affiliation(s)
- Maria I Prokofeva
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexander G Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexandra A Klyukina
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65/1, Moscow, Russia, 119991
| | - Gennady S Kachmazov
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named After K.L.Khetagurov, Vatutina Str., 44-46, Vladikavkaz, Russia, 362025
| | - Stepan V Toshchakov
- National Research Centre "Kurchatov Institute", Akademika Kurchatova Sq., 1, Moscow, Russia, 123182
| | - Evgenii N Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Olga A Podosokorskaya
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
| |
Collapse
|
2
|
Atroshenko DL, Golovina DI, Sergeev EP, Shelomov MD, Elcheninov AG, Kublanov IV, Chubar TA, Pometun AA, Savin SS, Tishkov VI. Bioinformatics-Structural Approach to the Search for New D-Amino Acid Oxidases. Acta Naturae 2022; 14:57-68. [PMID: 36694899 PMCID: PMC9844085 DOI: 10.32607/actanaturae.11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 01/22/2023] Open
Abstract
D-amino acid oxidase (DAAO, EC 1.2.1.2) plays an important role in the functioning of prokaryotes as well as of lower (yeast and fungi) and higher eukaryotes (mammals). DAAO genes have not yet been found in archaean genomes. D-amino acid oxidase is increasingly used in various fields, which requires the development of new variants of the enzyme with specific properties. However, even within one related group (bacteria, yeasts and fungi, mammals), DAAOs show very low homology between amino acid sequences. In particular, this fact is clearly observed in the case of DAAO from bacteria. The high variability in the primary structures of DAAO severely limits the search for new enzymes in known genomes. As a result, many (if not most) DAAO genes remain either unannotated or incorrectly annotated. We propose an approach that uses bioinformatic methods in combination with general 3D structure and active center structure analysis to confirm that the gene found encodes D-amino acid oxidase and to predict the possible type of its substrate specificity. Using a homology search, we obtained a set of candidate sequences, modelled the tertiary structure of the selected enzymes, and compared them with experimental and model structures of known DAAOs. The effectiveness of the proposed approach for discrimination of DAAOs and glycine oxidases is shown. Using this approach, new DAAO genes were found in the genomes of six strains of extremophilic bacteria, and for the first time in the world, one gene was identified in the genome of halophilic archaea. Preliminary experiments confirmed the predicted specificity of DAAO from Natronosporangium hydrolyticum ACPA39 with D-Leu and D-Phe.
Collapse
Affiliation(s)
- D L Atroshenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
- Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia
| | - D I Golovina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - E P Sergeev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - M D Shelomov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - A G Elcheninov
- Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia
| | - I V Kublanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
- Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia
| | - T A Chubar
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - A A Pometun
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
- Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia
| | - S S Savin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - V I Tishkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russia
- Federal Research Centre "Fundamentals of Biotechnology" of RAS, Moscow, 119071 Russia
| |
Collapse
|
3
|
Sorokin DY, Elcheninov AG, Khizhniak TV, Koenen M, Bale NJ, Damsté JSS, Kublanov IV. Natronocalculus amylovorans gen. nov., sp. nov., and Natranaeroarchaeum aerophilus sp. nov., dominant culturable amylolytic natronoarchaea from hypersaline soda lakes in southwestern siberia. Syst Appl Microbiol 2022; 45:126336. [DOI: 10.1016/j.syapm.2022.126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|