1
|
Guzman KM, Cogan DP, Brodsky KL, Soohoo AM, Li X, Sevillano N, Mathews II, Nguyen KP, Craik CS, Khosla C. Discovery and Characterization of Antibody Probes of Module 2 of the 6-Deoxyerythronolide B Synthase. Biochemistry 2023. [PMID: 37184546 DOI: 10.1021/acs.biochem.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function relationships of assembly line polyketide synthases (PKSs). We report the discovery and characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase (KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 and BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 without altering either parameter; it is phenotypically reminiscent of a previously characterized Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of the two antibodies. The new tools and insights reported here pave the way toward advancing our understanding of the structure-function relationships of DEBS Module 2, arguably the most well-studied module of an assembly line PKS.
Collapse
Affiliation(s)
- Katarina M Guzman
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dillon P Cogan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Krystal L Brodsky
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander M Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiuyuan Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Khanh P Nguyen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
3
|
Pathway and protein engineering for biosynthesis. Synth Syst Biotechnol 2022; 7:1044-1045. [PMID: 35801091 PMCID: PMC9241027 DOI: 10.1016/j.synbio.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|