1
|
Ma D, Olivares CI. Perfluoroalkane Sulfonamides and Derivatives, a Different Class of PFAS: Sorption and Microbial Biotransformation Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40415270 DOI: 10.1021/acs.est.5c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Perfluoroalkane sulfonamides and their derivatives (FASAs), an emerging subclass of per- and polyfluoroalkyl substances (PFAS), have attracted increasing attention due to their widespread applications, environmental persistence, and potential biological toxicity. Unlike perfluoroalkyl acids (PFAAs), FASAs can be transformed by microorganisms in the environment, producing fluorinated intermediates that eventually form stable PFAAs. A key difference of FASAs is that their pKas enable them to exist as neutral species or zwitterions, unlike all other PFAS subclasses, which are all anions. Sorption processes regulate the bioavailability of FASAs to microorganisms for transformation, driving the environmental transport and fate of FASAs. In this critical review, we provide a comprehensive overview of the classification, properties, and environmental fate of FASAs, with a focus on sorption and microbial transformation. We discuss recent advancements in understanding the sorption of FASAs onto soil, sediment, and microbial biomass, including key sorption descriptors and influencing factors. Additionally, we examine the microbial biotransformation of FASAs, detailing transformation pathways, key intermediates, transformation kinetics, and enzymes involved. Finally, we identify critical research gaps and propose future directions to advance the study of the sorption and biotransformation of FASAs in environmental systems. Mechanistic understanding of these processes is crucial for managing sites impacted with FASAs.
Collapse
Affiliation(s)
- Donghui Ma
- Civil & Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Christopher I Olivares
- Civil & Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Ha GS, Sim MG, Jeon BH, Baek G. Bioremediation of perfluorooctanoic acid using microalgae with a transcriptomic approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137508. [PMID: 39923375 DOI: 10.1016/j.jhazmat.2025.137508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Microalgal-mediated bioremediation technologies offer sustainable strategies for removal of emerging contaminants in aquatic environments. However, the molecular mechanisms and bioremediation pathways in microalgal species involved in the degradation of persistent organic pollutant perfluorooctanoic acid (PFOA) remain largely unexplored and poorly characterized. This study explored the potential of four microalgal strains for PFOA treatment and examined the expression of key functional genes through transcriptomic analysis. Scenedesmus quadricauda emerged as the most promising candidate for PFOA removal, exhibiting a high removal efficiency of 58.2 % (1.22 mg-PFOA/g-microalgae) at an initial PFOA concentration of 5 ppm. The mass balance analysis of PFOA removal by S. quadricauda revealed that 44.8 % of the PFOA was removed through bioaccumulation, and 12.8 % through biosorption. The chromatographic analysis confirmed that a portion of the bioaccumulated PFOA (0.58 %, 22.7 μg/L) was biodegraded by the biological removal mechanism in microalgae and identified by-products of PFOA. When S. quadricauda was exposed to PFOA, the fatty acid methyl ester yield increased by 178 % through transesterification. The transcriptome analysis revealed key functional genes involved in defense, energy production, and degradation in response to PFOA exposure. These results underscore the need to develop microalgae-mediated bioremediation technology for effectively removing PFOA from polluted aquatic environments.
Collapse
Affiliation(s)
- Geon-Soo Ha
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min-Gu Sim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gahyun Baek
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Shafi Kuttiyathil M, Ali L, Altarawneh M. Thermochemical Recycling and Degradation Strategies of Halogenated Polymers (F-, Cl-, Br-): A Holistic Review Coupled with Mechanistic Insights. CHEM REC 2025:e202500022. [PMID: 40195574 DOI: 10.1002/tcr.202500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Handling the waste associated with halogenated polymers is a daunting task due to the well-documented emission of halogen-bearing toxicants during the disposal or recycling operation. According to the Stockholm Convention treaty, most of these products are classified as persistent organic pollutants due to their potential health hazards. This review aims to provide a holistic overview of the recent updates for treating halogenated polymeric waste through physical, chemical and biological approaches. In the line of inquiry, critical analysis of the obstacles and prospects associated with each degradation technique on the halogenated polymer has been performed, assessing based on the degradation efficiency, treatment upscaling, pollution control, and feasibility. Though many treatments show promising results, they also entail drawbacks. Thermal treatment exploiting various metal oxides, especially calcium additives, is considered the most executable technique for halogenated polymer valorization coupled with mineralization/metal extraction due to its intuitive operational feasibility and potential scalability. Strategies for combating the soaring halogenated polymeric wastes summarized herein tap into promoting a circular economy approach for their sustainable disposal and recycling.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
4
|
Sorn S, Matsuura N, Honda R. Metagenome-Assembled Genomes and Metatranscriptome Analysis of Perfluorooctane Sulfonate-Reducing Bacteria Enriched From Activated Sludge. Environ Microbiol 2025; 27:e70087. [PMID: 40170341 PMCID: PMC11962240 DOI: 10.1111/1462-2920.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exhibit a widespread distribution across diverse global ecosystems throughout their lifecycle, posing substantial risks to human health. The persistence of PFAS makes biodegradation a challenging yet environmentally friendly solution for their treatment. In the authors' previous study, a bacterial consortium capable of reducing perfluorooctane sulfonate (PFOS) was successfully enriched from activated sludge. This study aimed to investigate the array of genes associated with PFOS reduction via biosorption and biotransformation to elucidate the metabolic pathways. Two metagenome-assembled genomes (MAGs) based on 16S rRNA sequences that share 99.86% and 97.88% similarity with Hyphomicrobium denitrificans and Paracoccus yeei, respectively were obtained. They were found to contain several genes encoding enzymes that potentially regulate biofilm formation of biosorption and facilitate the desulfonation and defluorination processes of biotransformation. Transcriptomic analysis demonstrated the high expression levels of these genes, including alkanesulfonate monooxygenase, catechol dioxygenase, (S)-2-haloacid dehalogenase and putative cytochrome P450, suggesting their involvement in PFOS biotransformation. The expression of these genes supports the presence of candidate metabolites of PFOS biotransformation detected in the previous study. These findings emphasise the significant potential of bacterial consortia and the crucial role played by genes encoding enzymes in facilitating the remediation of PFOS contaminants.
Collapse
Affiliation(s)
- Sovannlaksmy Sorn
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
- Faculty of Agricultural and Marine SciencesKochi UniversityNankokuKochiJapan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Honda
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
5
|
Skinner JP, Raderstorf A, Rittmann BE, Delgado AG. Biotransforming the "Forever Chemicals": Trends and Insights from Microbiological Studies on PFAS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5417-5430. [PMID: 40067878 PMCID: PMC11948467 DOI: 10.1021/acs.est.4c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 03/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are recalcitrant contaminants of emerging concern. Research efforts have been dedicated to PFAS microbial biotransformation in the hopes of developing treatment technologies using microorganisms as catalysts. Here, we performed a meta-analysis by extracting and standardizing quantitative data from 97 microbial PFAS biotransformation studies and comparing outcomes via statistical tests. This meta-analysis indicated that the likelihood of PFAS biotransformation was higher under aerobic conditions, in experiments with defined or axenic cultures, when high concentrations of PFAS were used, and when PFAS contained fewer fluorine atoms in the molecule. This meta-analysis also documented that PFAS biotransformation depends on chain length, chain branching geometries, and headgroup chemistry. We found that the literature is scarce or lacking in (i) anaerobic PFAS biotransformation experiments with well-defined electron acceptors, electron donors, carbon sources, and oxidation-reduction potentials, (ii) analyses of PFAS biotransformation products, and (iii) analyses to identify microorganisms and enzymes responsible for PFAS biotransformation. To date, most biotransformation research emphasis has been on 8:2 fluorotelomer alcohol (8:2 FTOH), 6:2 fluorotelomer alcohol (6:2 FTOH), perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA). A wide array of PFAS remains to be tested for their potential to biotransform.
Collapse
Affiliation(s)
- Justin P. Skinner
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287, United States
- Center
for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, Arizona 85281, United States
| | - Alia Raderstorf
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287, United States
- Center
for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, Arizona 85281, United States
- Natural
Resource Conservation Service, U.S. Department
of Agriculture, 1585
S Plaza Way #120, Flagstaff, Arizona 86001, United States
| | - Bruce E. Rittmann
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287, United States
- Center
for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, Arizona 85281, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287, United States
- Center
for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, Arizona 85281, United States
| |
Collapse
|
6
|
Mekureyaw MF, Junker AL, Bai L, Zhang Y, Wei Z, Guo Z. Laccase based per- and polyfluoroalkyl substances degradation: Status and future perspectives. WATER RESEARCH 2025; 271:122888. [PMID: 39637694 DOI: 10.1016/j.watres.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) with stable carbon-fluorine bonds are used in a wide range of industrial and commercial applications. Due to their extreme environmental persistence, PFAS have the potential to bioaccumulate, cause adverse effects, and present challenges regarding remediation. Recently, microbial and enzymatic reactions for sustainable degradation of PFAS have gained attention from researchers, although biological decomposition of PFAS remains challenging. Surprisingly, laccases, the multi-copper oxidases produced by various organisms, showed potential for PFAS degradation. Mediators play key roles in initiating laccase induced PFAS degradation and defluorination reactions. The laccase-catalyzed PFAS degradation reactions are relatively slower than normal biocatalytic reactions and the low activity of native laccases constrains their capacity to complete defluorination. With their low redox potential and narrow substrate scope, an innovative remediation strategy must be taken to accelerate this reaction. In this review we have summarized the status, challenges, and future perspectives of enzymatic PFAS degradation. The knowledge of laccase-based defluorination and the molecular basis of the reaction mechanisms overviewed in this study could inform future applications of laccases for sustainable PFAS remediation.
Collapse
Affiliation(s)
- Mengistu F Mekureyaw
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Allyson Leigh Junker
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Yan Zhang
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark.
| | - Zheng Guo
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark.
| |
Collapse
|
7
|
Yang SY, Lai CY, Zhao HP. Trichloroethylene detoxification in low-permeability soil via electrokinetic-enhanced bioremediation technology: Long-term feasibility and spatial-temporal patterns. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136743. [PMID: 39637786 DOI: 10.1016/j.jhazmat.2024.136743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
In situ remediation of low-permeability soils contaminated with trichloroethylene (TCE) is challenging due to limited mass transfer and low bioavailability in clay soils. The electrokinetic-enhanced bioremediation (EK-BIO) system offers a promising solution by combining electrokinetics with bioremediation to address these challenges. While previous studies have demonstrated microbial succession and TCE removal, the long-term performance of dechlorination and interactions between electrode reactions and anaerobic dechlorination remain unclear. This study constructed five one-dimensional columns, each operated for a different period (28, 42, 56, 84 and 138 days) to explore spatial and temporal dechlorination patterns. Continuous TCE degradation was achieved, with 46.52 % of TCE recovery. Prolonged electrokinetic operation accelerated the first-step dehalogenation (TCE to DCE). Although Dehalococcoides was widespread at 138 days (2.30-5.74 %), oxygen exposure led to irreversible damage, necessitating secondary inoculation. The presence of aerobic bacteria (Comamonas and Pseudomonas) suggested the formation of aerobic detoxification pathways in electrode chambers. Gene expression analysis (tceA, vcrA and Dhc16S) further confirmed the loss of 2nd and 3rd step dehalogenation (DCE to ethene) over time. These findings demonstrate that secondary inoculation and alternative aerobic pathways can sustain long-term biodegradation in the EK-BIO system. This study highlights the potential of the EK-BIO system for effective remediation of TCE-contaminated low-permeability soils, supporting its field application.
Collapse
Affiliation(s)
- Si-Ying Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China,.
| |
Collapse
|
8
|
Zhang K, Li Q, Gong C, Mao H, Han D. Inhibitory effect of andrographolide on the expression of key regulatory genes in Staphylococcus epidermidis biofilm formation. J Mol Histol 2024; 56:53. [PMID: 39714542 DOI: 10.1007/s10735-024-10295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024]
Abstract
The purpose of this study was to explore the inhibitory effect of andrographolide on the expression of key regulatory genes involved in the biofilm formation of Staphylococcus epidermidis (SE). Taking the film-producing strain Staphylococcus epidermidis SE1457 as the research object, the effect of andrographolide on the formation of Staphylococcus epidermidis biofilms was analyzed via crystal violet staining, and biofilm models of SE adhesion, aggregation and maturity were established in vitro. RT‒PCR was used to detect the effects of the expression of icaA-, atlE-, aap- and luxS-related genes of andrographolide on biofilm formation in SE. Congo red qualitative test to evaluate the ability of andrographolide to inhibit biofilm formation of Staphylococcus epidermidis. Compared with that of the control group, the light absorption value of the low- and high-concentration andrographolide groups was significantly lower, and the light absorption value of the high-concentration andrographolide group was significantly lower than that of the low-concentration andrographolide group. The levels of key genes involved in the adhesion, aggregation and maturation of icaA, atlE, aap and luxS in group C were greater than those in group B. The biofilm-forming ability of SE in group A was strong, and the colonies were obviously black. The colony in the direction of the arrow in group B was red, and the SE biofilm was inhibited. Most of the colonies in group C were red. SE biofilms were significantly inhibited. Andrographolide inhibits SE biofilm formation, and its mechanism may involve inhibition of the expression of the related genes icaA, atlE, aap and luxS.
Collapse
Affiliation(s)
- Kangjian Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China
| | - Qing Li
- Department of Clinical Laboratory, The Third People's Hospital of Jinan, Jinan, 250000, Shandong Province, China
| | - Chengxia Gong
- Department of Emergency, The Second Hospital of Shandong University, Jinan, 250000, Shandong Province, China
| | - Huihui Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China
| | - Daobin Han
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China.
| |
Collapse
|
9
|
Chetverikov S, Hkudaigulov G, Sharipov D, Starikov S. Probable New Species of Bacteria of the Genus Pseudomonas Accelerates and Enhances the Destruction of Perfluorocarboxylic Acids. TOXICS 2024; 12:930. [PMID: 39771145 PMCID: PMC11728705 DOI: 10.3390/toxics12120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Bacteria of the genus Pseudomonas are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus Pseudomonas to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain P. mosselii 5(3), which has previously confirmed genetic potential for the degrading of PFCAs. The complete genome (5.86 million base pairs) of the strain 2,4-D, probably belonging to a new species of Pseudomonas, was sequenced, assembled, and analyzed. The genomes of both strains contain genes involved in the defluorination of fluorinated compounds, including haloacetate dehalogenase H-1 (dehH1) and haloalkane dehalogenase (dhaA). The strain 2,4-D also has a multicomponent enzyme system consisting of a dioxygenase component, an electron carrier, and 2-halobenzoate 1,2-dioxygenase (CbdA) with a preference for fluorides. The strain 2,4-D was able to defluorinate PFCAs in an aqueous cultivation system within 7 days, using them as the sole source of carbon and energy and converting them to perfluorheptanoic acid. It assisted strain 5(3) to convert PFCAs to perfluoropentanoic acid, accelerating the process by 24 h. In a model experiment for the bioaugmentation of microorganisms in artificially contaminated soil, the degradation of PFCAs by the association of pseudomonads also occurred faster and deeper than by the individual strains, achieving a degree of biodestruction of 75% over 60 days, with the perfluoropentanoic acid as the main metabolite. These results are of great importance for the development of methods for the biological recultivation of fluorinated organic pollutants for environmental protection and for understanding the fundamental mechanisms of bacterial interactions with these compounds.
Collapse
Affiliation(s)
- Sergey Chetverikov
- Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (G.H.); (D.S.); (S.S.)
| | | | | | | |
Collapse
|
10
|
Huang S, Smorada C, Schaefer CE, Jaffé PR. Stimulating Acidimicrobium sp. Strain A6 in iron-rich, acidic sediments from AFFF-impacted sites for PFAS defluorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176801. [PMID: 39389130 DOI: 10.1016/j.scitotenv.2024.176801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative contaminants that are widely used in industrial applications and consumer products and pose significant risks to ecosystems and human health. Acidimicrobium sp. Strain A6 (A6), which is common in acidic, and iron rich soils and sediments is capable of both anaerobic ammonium (NH4+) oxidation under iron reduction (Feammox) and defluorination of perfluorinated alkyl substances, such as perfluoroalkyl acids (PFAAs). This study investigates the potential for biostimulating A6 via the supply of NH4+ and ferric iron (Fe(III)) with the goal of defluorinating PFAAs. Sediment samples from acidic, iron-rich, AFFF (aqueous film forming foam) impacted sites were collected and incubated with added Fe(III) and NH4+. Quantitative PCR was used to track A6 numbers as well as dehalogenase and F- ion transporter genes during these incubations; changes in the microbial community structure were tracked through 16S rRNA gene sequencing. The findings reveal that the addition of Fe(III) and NH4+ stimulated the Feammox reaction and A6 growth and enhanced the degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Results also show a significant presence and activity of the above-mentioned genes in these incubations. The insights gained from this study could inform bioremediation strategies for PFAS-contaminated environments, especially in geochemical settings that favor the presence of A6.
Collapse
Affiliation(s)
- Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Chiara Smorada
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, United States of America
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States of America.
| |
Collapse
|
11
|
Niu Q, Lin X, Zheng X, Wu Y, Long M, Chen Y. Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136173. [PMID: 39467433 DOI: 10.1016/j.jhazmat.2024.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The widespread utilization of per- and polyfluoroalkyl substances (PFASs) as "forever chemicals" is posing significant environmental risks and adverse effects on human health. Microbial degradation (e.g., bacteria and fungi) has been identified as a cost-effective and environmentally friendly method for PFAS degradation. However, its degradation efficiency, biotransformation pathway, and microbial mechanism vary significantly under aerobic and anaerobic conditions. This review provides a comprehensive overview of the similarities and differences in PFAS microbial degradation by bacteria and fungi under different oxygen conditions. Initially, the efficiencies and metabolites of PFAS microbial degradation were compared under aerobic and anaerobic conditions, including perfluorinated and polyfluorinated compounds. Additionally, the microbial mechanisms of PFAS microbial degradation were obtained by summarizing key degrading microbes and enzymes. Finally, the comparisons between aerobic and anaerobic conditions in PFAS microbial degradation were provided, addressing the main challenges and proposing future research directions focused on seeking combined biodegradation techniques, exploring novel microbial species capable of degrading PFAS, and confirming complete biodegradation pathways. The understanding of PFAS microbial degradation in aerobic and anaerobic environments is crucial for providing potential solutions and future research efforts in dealing with these "forever chemicals".
Collapse
Affiliation(s)
- Qiuqi Niu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinrong Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
12
|
Huang S, Pilloni G, Key TA, Jaffé PR. Defluorination of various perfluoro alkyl acids and selected PFOA and PFOS monomers by Acidimicrobium sp. Strain A6 enrichment cultures. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136426. [PMID: 39531816 DOI: 10.1016/j.jhazmat.2024.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as a diverse class of environmental pollutants, garnering increasing attention due to their various structural types and potential ecological impacts. The impact of select PFAS on environmental microorganisms and the potential for microbial degradation of certain PFAS are timely research topics. In this study, we conducted a series of batch incubation to investigate the effects of C4-C10 perfluoroalkyl carboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), as well as linear and branched perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) monomers, on the Feammox reaction and Acidimicrobium sp. A6 (A6), a microbe known to degrade PFOA and PFOS. We explored the defluorination ability of A6 cultures with these PFAS, evaluating their response to varying chemical structures. While A6 cultures demonstrated the ability to degrade a wide range of PFAAs (11.5-56.9 % reduction over 120 days), challenges were noted with specific compounds like PFPeA and double-branched PFCAs and PFSAs, which also showed reduced ammonium removal. Additionally, exposure to the selected PFAS resulted in notable shifts in the microbial community within the A6 enrichment cultures, indicating a selective pressure that benefits certain strains (e.g., increased percentages of Acidimicrobium, Paraburkholderia, and Desulfosporosinus in several PFCA, PFSA and PFOA/PFOS monomers enriched cultures). These insights contribute to our understanding of microbial-PFAS interactions and are instrumental in developing bioremediation strategies for PFAS-impacted environments.
Collapse
Affiliation(s)
| | - Giovanni Pilloni
- ExxonMobil Technology and Engineering Company, United States; ExxonMobil Environmental and Property Solutions Company, United States
| | - Trent A Key
- ExxonMobil Biomedical Sciences Inc., United States
| | | |
Collapse
|
13
|
Qian X, Huang J, Cao C, Yao J, Wu Y, Wang L, Wang X. Bioelectricity drives transformation of nitrogen and perfluorooctanoic acid in constructed wetlands: Performances and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135891. [PMID: 39341192 DOI: 10.1016/j.jhazmat.2024.135891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
In this study, constructed wetland-microbial fuel cell (CW-MFC) filled with modified basalt fiber (MBF) via iron modification was utilized for treating perfluorooctanoic acid (PFOA) containing sewage. Results showed the significant promotion by bioelectricity on ammonium and total nitrogen by 7.80-8.14 %. Although such enhancement was suppressed by PFOA, higher removal was still observed with closed circuit, and PFOA removal also increased by 9.05 %. Bioelectricity contributed to enrichment of bacteria involved in nitrifying (Nitrospira and Ellin6067), denitrifying (like Thauera and Dechloromonas), iron redox (Geobacter), and sulfate-reducing (Desulfobacter), aligned with up-regulated of functional genes, including amoA, narG , napA, narK, narS, nrfA, sulp and sqr. Enrichment of autohydrogenotrophic and sulfide-oxidizing autotrophic denitrifiers, and nitrate dependent iron oxidation bacteria by bioelectricity all promoted denitrification. Moreover, bioelectricity boosted relative abundance of organic compounds degradation enzymes, such as dehydrogenase, decarboxylase, and dehalogenase, supporting the enhancement on PFOA removal. Generally, PFOA was converted to short-chain perfluorocarboxylic acids (PFCAs) via decarboxylation, hydroxylation, HF elimination, hydrolysis, F- elimination, C-C bond scission, and dehydration in CW-MFC. The final PFCAs-products determined was perfluorobutyric acid. This work estimated feasibility of treating PFOA containing sewage by CM-MFC, and offered new insights on enhancing mechanisms of nitrogen and PFOA conversion.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Kim J, Leonard SW, Van Meter MI, Kim-Fu ML, Cao D, Field JA, Chu KH. Nexus of Soil Microbiomes, Genes, Classes of Carbon Substrates, and Biotransformation of Fluorotelomer-Based Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20553-20565. [PMID: 39501641 PMCID: PMC11580179 DOI: 10.1021/acs.est.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The unpredictable biodegradation of fluorotelomer (FT)-based per- and polyfluoroalkyl substances (PFAS) causes complicated risk management of PFAS-impacted sites. Here, we have successfully used redundancy analysis to link FT-based precursor biodegradation to key microbes and genes of soil microbiomes shaped by different classes of carbon sources: alcohols (C2-C4), alkanes (C6 and C8), an aromatic compound (phenol), or a hydrocarbon surfactant (cocamidopropyl betaine [CPB]). All the enrichments defluorinated fluorotelomer alcohols (n:2 FtOH; n = 4, 6, 8) effectively and grew on 6:2 fluorotelomer sulfonate (6:2 FtS) as a sulfur source. The butanol-enriched culture showed the highest defluorination extent for FtOHs and 6:2 FtS due to the high microbial diversity and the abundance of desulfonating and defluorinating genes. The CPB-enriched culture accumulated more 5:3 fluorotelomer carboxylic acid, suggesting unique roles of Variovorax and Pseudomonas. Enhanced 6:2 FtOH defluorination was observed due to a synergism between two enrichments with different carbon source classes except for those with phenol- and CPB-enriched cultures. While the 6:2 fluorotelomer sulfonamidoalkyl betaine was not degraded, trace levels of 6:2 fluorotelomer sulfonamidoalkyl amines were detected. The identified species and genes involved in desulfonation, defluorination, and carbon source metabolism are promising biomarkers for assessing precursor degradation at the sites.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Scott W. Leonard
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mariann Inga Van Meter
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mitchell L. Kim-Fu
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dunping Cao
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer A. Field
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kung-Hui Chu
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Colston SM, Barbato RA, Goodson MS, Karl JP, Kokoska RJ, Leary DD, Racicot K, Varaljay V, Soares JW. Current advances in microbiome sciences within the US Department of Defense: part 2 - enabling technologies and environmental microbiomes. BMJ Mil Health 2024; 170:435-439. [PMID: 37336582 DOI: 10.1136/military-2022-002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Microbiomes involve complex microbial communities wherein the micro-organisms interact with one another as well as their associated hosts or environmental niches. Much of the characterisation of these communities and the associations have been achieved through 'omics' technologies, such as metagenomics, metaproteomics and metametabolomics, and model systems. Recent research in host-associated microbiomes has been aimed at understanding the role microbes may play in host fitness or conversely how host activities/conditions may perturb the microbial community, which can further affect host health. These studies have led to the investigation of detection, intervention or modulation methods, which may serve to provide benefits to the host and advance our understanding of microbiome associations. With the clear implications on human health and disease, the US Department of Defense (DoD) has made microbiome research a priority, with the founding of the Tri-Service Microbiome Consortium (TSMC) to enhance collaboration, coordination,and communication of microbiome research among DoD organisations and partners in academia and industry. DoD microbiome research focuses mainly on the following themes: (1) human health and performance, (2) environmental microbiomes and (3) enabling technologies. This review provides an update of current DoD microbiome research efforts centred on enabling technologies and environmental microbiomes and highlights innovative research being done in academia and industry that can be leveraged by the DoD. These topics were also communicated and further discussed in the Fifth Annual TSMC Symposium. This paper forms part of the special issue of BMJ Military Health dedicated to personalised digital technology for mental health in the Armed Forces.
Collapse
Affiliation(s)
- Sophie M Colston
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - R A Barbato
- Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, New Hampshire, USA
| | - M S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - J P Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - R J Kokoska
- Physical Sciences Directorate, US Army Research Office, Research Triangle Park, North Carolina, USA
| | - D D Leary
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - K Racicot
- Soldier Effectiveness Directorate, US Army Combat Capabilities and Development Command Soldier Center, Natick, Massachusetts, USA
| | - V Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - J W Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities and Development Command Soldier Center, Natick, Massachusetts, USA
| |
Collapse
|
16
|
Verma H, Kaur J, Thakur V, Dhingra GG, Lal R. Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme. Arch Microbiol 2024; 206:380. [PMID: 39143366 DOI: 10.1007/s00203-024-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.
Collapse
Affiliation(s)
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Delhi, 110007, India
| | | | | | - Rup Lal
- INSA, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
17
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
18
|
Smorada CM, Sima MW, Jaffé PR. Bacterial degradation of perfluoroalkyl acids. Curr Opin Biotechnol 2024; 88:103170. [PMID: 39013276 DOI: 10.1016/j.copbio.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Advances in biological degradation of per- and polyfluoroalkyl substances (PFAS) have shown that bioremediation is a promising method of PFAS mineralization; however, most of these studies focus on remediation of more reactive polyfluorinated compounds. This review focuses on the defluorination of the more recalcitrant perfluorinated alkyl acids (PFAAs) by bacteria. We highlight key studies that report PFAA degradation products, specific bacteria, and relevant genes. Among these studies, we discuss trends in anaerobic versus aerobic conditions with specific bacterial species or consortia. This holistic review seeks to elucidate the state of PFAA biodegradation research and discuss the need for future research for environmental application.
Collapse
Affiliation(s)
- Chiara M Smorada
- Department of Civil and Environmental Engineering, Princeton University, USA
| | - Matthew W Sima
- Department of Civil and Environmental Engineering, Princeton University, USA
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, USA.
| |
Collapse
|
19
|
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W. Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:349. [PMID: 39073492 DOI: 10.1007/s10653-024-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.
Collapse
Affiliation(s)
- Feiyu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Yi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Liping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Pengfei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Tianyue Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| | - Wenping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| |
Collapse
|
20
|
Farajollahi S, Lombardo NV, Crenshaw MD, Guo HB, Doherty ME, Davison TR, Steel JJ, Almand EA, Varaljay VA, Suei-Hung C, Mirau PA, Berry RJ, Kelley-Loughnane N, Dennis PB. Defluorination of Organofluorine Compounds Using Dehalogenase Enzymes from Delftia acidovorans (D4B). ACS OMEGA 2024; 9:28546-28555. [PMID: 38973860 PMCID: PMC11223199 DOI: 10.1021/acsomega.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Organofluorine compounds have been widely used as pharmaceuticals, agricultural pesticides, and water-resistant coatings for decades; however, these compounds are recognized as environmental pollutants. The capability of microorganisms and enzymes to defluorinate organofluorine compounds is both rare and highly desirable to facilitate environmental remediation efforts. Recently, a strain of Delftia acidovorans (D4B) was identified with potential biodegradation activity toward perfluoroalkyl substances (PFAS) and other organofluorine compounds. Genomic analysis found haloacid and fluoroacetate dehalogenases as enzymes associated with Delftia acidovorans. Here, defluorination activity of these enzymes toward different fluorinated substrates was investigated after their recombinant expression and purification from E. coli. Using an electrochemical fluoride probe, 19F NMR, and mass spectrometry to monitor defluorination, we identified two dehalogenases, DeHa2 (a haloacid dehalogenase) and DeHa4 (a fluoroacetate dehalogenase), with activity toward mono- and difluoroacetate. Of the two dehalogenases, DeHa4 demonstrated a low pH optimum compared to DeHa2, which lost catalytic activity under acidic conditions. DeHa2 and DeHa4 are relatively small proteins, operate under aerobic conditions, and remain active for days in the presence of substrates. Significantly, while there have been many reports on dehalogenation of monofluoroacetate by dehalogenases, this study adds to the relatively small list of enzymes reported to carry out enzymatic defluorination of the more recalcitrant disubstituted carbon in an organofluorine compound. Thus, DeHa2 and DeHa4 represent organofluorine dehalogenases that may be used in the future to design and engineer robust defluorination agents for environmental remediation efforts.
Collapse
Affiliation(s)
- Sanaz Farajollahi
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Nina V. Lombardo
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Michael D. Crenshaw
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Hao-Bo Guo
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Megan E. Doherty
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Tina R. Davison
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Jordan J. Steel
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Erin A. Almand
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Vanessa A. Varaljay
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- The
Ohio State University, Infectious Diseases
Institute, Columbus, Ohio United States 43210-1132
| | - Chia Suei-Hung
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Peter A. Mirau
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Rajiv J. Berry
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Patrick B. Dennis
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| |
Collapse
|
21
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
22
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Xiang Y, Li S, Rene ER, Lun X, Zhang P, Ma W. Detoxification of fluoroglucocorticoid by Acinetobacter pittii C3 via a novel defluorination pathway with hydrolysis, oxidation and reduction: Performance, genomic characteristics, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131302. [PMID: 37031670 DOI: 10.1016/j.jhazmat.2023.131302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Biological dehalogenation degradation was an important detoxification method for the ecotoxicity and teratogenic toxicity of fluorocorticosteroids (FGCs). The functional strain Acinetobacter pittii C3 can effectively biodegrade and defluorinate to 1 mg/L Triamcinolone acetonide (TA), a representative FGCs, with 86 % and 79 % removal proportion in 168 h with the biodegradation and detoxification kinetic constant of 0.031/h and 0.016/h. The dehalogenation and degradation ability of strain C3 was related to its dehalogenation genomic characteristics, which manifested in the functional gene expression of dehalogenation, degradation, and toxicity tolerance. Three detoxification mechanisms were positively correlated with defluorination pathways through hydrolysis, oxidation, and reduction, which were regulated by the expression of the haloacid dehalogenase (HAD) gene (mupP, yrfG, and gph), oxygenase gene (dmpA and catA), and reductase gene (nrdAB and TgnAB). Hydrolysis defluorination was the most critical way for TA detoxification metabolism, which could rapidly generate low-toxicity metabolites and reduce toxic bioaccumulation due to hydrolytic dehalogenase-induced defluorination. The mechanism of hydrolytic defluorination was that the active pocket of hydrolytic dehalogenase was matched well with the spatial structure of TA under the adjustment of the hydrogen bond, and thus induced molecular recognition to promote the catalytic hydrolytic degradation of various amino acid residues. This work provided an effective bioremediation method and mechanism for improving defluorination and detoxification performance.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sinuo Li
- Beijing No. 80 High School, Beijing 100102, China
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, the Netherlands
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Rybczyńska-Tkaczyk K, Skóra B, Szychowski KA. Toxicity of bisphenol A (BPA) and its derivatives in divers biological models with the assessment of molecular mechanisms of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27747-y. [PMID: 37213006 DOI: 10.1007/s11356-023-27747-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The aim of the study was to determine totoxicity of bisphenol A (BPA) and its derivatives (bisphenol S (BPS), bisphenol F (BPF), and tetrabromobisphenol A (TBBPA)) due to its high accumulation in environment. The performed analysis revealed the toxicity of the BPA, BPF, and BPS against Kurthia gibsoni, Microbacterium sp., and Brevundimonas diminuta as the most sensitive, reaching microbial toxic concentrations in the range of 0.018-0.031 mg ∙ L-1. Moreover, the genotoxicity assay shows the ability of all tested compounds to increase in the β-galactosidase level at the concentration range 7.81-500 µM (in Escherichia coli, PQ37). In turn, the matbolic activation of tested bishpenols has caused the enhacement of the genotoxicity and cytotoxicity effect. Interestingely, the highest phytotoxicity effect was pointed for BPA and TBBPA at the concentrations of 10 mg ∙ L-1 and 50 mg ∙ L-1, which cause the inhibition of root growth by 58% and 45%, respectively (especially for S. alba and S. saccharatum). Furthermore, the cytotoxicity analyses show the ability of BPA, BPS, and TBBPA to significantly decrease the metabolic activity of human keratynoctes in vitro after 24 h of treatment at the micromolar concentrations. Simialry, the impact of the certain bisphenols on proliferation-, apoptosis-, and inflammation-related mRNA expression was shown in tested cell line. Summarizing, the presented results have proved that BPA and its derrivatives are able to show high negative effect on certain living orgnisms such as bacteria, plants, and human cells, which is strict related to pro-apoptotic and genotoxic mechanism of action.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069, Lublin, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| |
Collapse
|
25
|
Liao Q, Tang P, Fan H, Song Y, Liang J, Huang H, Pan D, Mo M, Lin M, Chen J, Wei H, Long J, Shao Y, Zeng X, Liu S, Huang D, Qiu X. Association between maternal exposure to per- and polyfluoroalkyl substances and serum markers of liver function during pregnancy in China: A mixture-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121348. [PMID: 36842621 DOI: 10.1016/j.envpol.2023.121348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that per- and polyfluoroalkyl substances (PFAS) may have hepatotoxic effects in animals. However, epidemiological evidence in humans, especially pregnant women, is limited. This study aimed to assess the association of single and multiple PFAS exposure with serum markers of liver function in pregnant women. A total of 420 pregnant women from the Guangxi Zhuang Birth Cohort were enrolled from June 2015 to April 2019. Nine PFAS were measured in the maternal serum in early pregnancy. Data for liver function biomarkers, namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL), were obtained from medical records. In generalized linear model (GLM), there was a positive association of perfluorooctane sulfonate (PFOS) with ALT, perfluorodecanoic acid (PFDA) and perfluorobutanesulfonic acid (PFBS) with GGT, and perfluorohexane sulfonate (PFHxS) with TBIL and IBIL. In contrast, there was a negative association of perfluoroheptanoic acid (PFHpA) with TBIL. There were inverse U-shaped relationships of PFUnA with ALT and AST and PFDA with ALT by restricted cubic spline. The weighted quantile sum (WQS) regression model revealed the positive effects of the PFAS mixture on GGT, TBIL, DBIL, and IBIL. Bayesian kernel machine regression (BKMR) analysis confirmed that the PFAS mixture was positively associated with GGT, and PFBS was the main contributor. In addition, the BKMR model showed a positive association of individual PFBS with GGT, individual PFHxS with TBIL and IBIL, and a negative association of individual PFHpA with TBIL. Our findings provide evidence of an association between individual PFAS, PFAS mixture and maternal serum markers of liver function during pregnancy. Additionally, these findings also enhance concerns over PFAS exposure on maternal liver function and PFAS monitoring in pregnancy, reducing the effect of maternal liver dysfunction on maternal and infant health.
Collapse
Affiliation(s)
- Qian Liao
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Jun Liang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- Department of Medical and Health Management, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
26
|
Editorial for "Special Issue on the 2019 and 2020 iGEM Proceedings". Synth Syst Biotechnol 2022; 7:878-879. [PMID: 35601825 PMCID: PMC9096464 DOI: 10.1016/j.synbio.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|