1
|
Chen Y, Zhou T, Zhong J, Xu Y, Zhang P, Yue X, Zhang H, Sun M, Fu X. Genome-wide identification and expression analyses of CYP450 genes in Chrysanthemum indicum. BMC Genomics 2025; 26:494. [PMID: 40375135 DOI: 10.1186/s12864-025-11664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND The cytochrome P450 superfamily comprises a large group of enzymes crucial for the biosynthesis and metabolism of diverse endogenous and exogenous secondary metabolites in plants. Chrysanthemum, an ornamental genus with considerable medicinal value, is one of the most economically important floricultural crops in the world. The characteristics and functions of CYP450 genes in Chrysanthemum species, however, remain largely unknown. RESULTS In this study, we identified 371 CYP450 genes in the Chrysanthemum indicum genome, and categorized them into 8 clans and 44 families through phylogenetic analysis. Gene duplication analysis revealed 111 genes in 47 tandem duplicated clusters and 28 genes in 15 syntenic blocks, suggesting that extensive duplication events may account for the rapid expansion of CiCYP450 superfamily. Additionally, extensive variations in gene structure, motif composition, and cis-regulatory element likely enhance the functional diversity of CiCYP450 proteins. Volatile metabolomic analysis detected a total of 53 distinct volatile organic compounds across the leaves, stems, and roots of C. indicum, with 19 and 16 compounds being exclusive to leaves and stems, respectively. Transcriptomic analysis identified 248 expressed CiCYP450 genes, with 31, 40, and 88 specifically or preferentially expressed in leaves, stems, and roots, respectively. Further correlation analyses between gene expression levels and compound contents highlighted 36 candidate CiCYP450 genes potentially responsible for the biosynthesis of 47 volatile organic compounds. CONCLUSIONS The genome-wide analyses of cytochrome P450 superfamily offers essential genomic resources for functional studies of CiCYP450 genes, and is significant for the molecular breeding of Chrysanthemum.
Collapse
Affiliation(s)
- Yuyuan Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tongjun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jian Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Yuxian Xu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Peng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yue
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hua Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xuehao Fu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Kostal J, Voutchkova-Kostal A. Tale of Three N-Nitrosamines and the Variables Needed to Assess Their Carcinogenicity In Silico Incorporated into a Single Workflow. Chem Res Toxicol 2025. [PMID: 40243042 DOI: 10.1021/acs.chemrestox.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
N-Nitrosamine impurities in pharmaceuticals present a considerable challenge for regulators and industry alike, where the absence of carcinogenic-potency studies has left a gap that must be adequately filled to protect public health. In the interim, this means balancing risk assessment with the necessity to continue research, development, and supply of pharmaceuticals. In the long term, we need a cost-effective solution that optimizes both. As if beholden to Newton's Third Law, every crisis breeds an opportunity of equal magnitude. Consequently, cross-industry consortia have been racing to find a solution by advancing our current science. Recent spotlight has been on in silico tools, as a fast and increasingly reliable alternative to in vivo and in vitro testing. Because N-nitrosamine bioactivation lends itself uniquely to quantum mechanics (QM) approaches, the integration of electronic-structure considerations has emerged as the dominant in silico approach. This signifies a considerable leap in predictive toxicology, which has, for much of its existence, relied on atomistic (quantitative) structure-activity relationships, i.e., (Q)SARs. Here we present a validation of an integrated docking-QM approach within the CADRE program and demonstrate its utility on three different impurities, N-nitroso-7-monomethylamino-6-deoxytetracycline, N-nitroso-dabigatran etexilate, and 1-methyl-4-nitrosopiperazine. We show that a combined in silico strategy, which considers bioavailability, transport, cytochrome P450 binding, and reactivity, can be leveraged to supplement the overly conservative Carcinogenic Potency Categorization Approach (CPCA) in setting the daily acceptable intake (AI) using defensible, highly mechanistic, and quantitative drivers of N-nitrosamine metabolism. To that end, we argue that while N-nitroso-7-monomethylamino-6-deoxytetracycline and 1-methyl-4-nitrosopiperazine are cohort-of-concern impurities, N-nitroso-dabigatran etexilate is not a potent carcinogen (TD50 > 1.5 mg/kg/day), contrasting the CPCA-derived AI. Lastly, we discuss how the CADRE tool can be integrated with the broader landscape of QM methods and the CPCA into a single harmonized in silico strategy for carcinogenicity assessment of N-nitrosamine impurities.
Collapse
Affiliation(s)
- Jakub Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| | - Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
3
|
Su L, Souaibou Y, Hôtel L, Jacob C, Grün P, Shi YN, Chateau A, Pinel S, Bode HB, Aigle B, Weissman KJ. Exploiting the inherent promiscuity of the acyl transferase of the stambomycin polyketide synthase for the mutasynthesis of analogues. Chem Sci 2025; 16:5076-5088. [PMID: 39886430 PMCID: PMC11776934 DOI: 10.1039/d4sc06976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/07/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT12) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position. Feeding of a panel of synthetic and commercially available dicarboxylic acid 'mutasynthons' to an engineered strain of Streptomyces ambofaciens (Sa) deficient in synthesis of the native α-carboxyacyl-CoA extender units, resulted in six new series of stambomycin derivatives as judged by LC-HRMS and NMR. Notably, the highest product yields were observed for substrates which were only poorly accepted when AT12 was transplanted into a different PKS module, suggesting a critical role for domain context in the overall functioning of PKS proteins. We also demonstrate the superiority of this mutasynthesis approach - both in terms of absolute titers and yields relative to the parental compounds - in comparison to the alternative precursor-directed strategy in which monoacid building blocks are supplied to the wild type strain. We further identify a malonyl-CoA synthetase, MatB_Sa, with specificity distinct from previously described promiscuous enzymes, making it a useful addition to a mutasynthesis toolbox for generating atypical, CoA activated extender units. Finally, we show that two of the obtained (deoxy)-butyl-stambomycins exhibit antibacterial and antiproliferative activities similar to the parental stambomycins, while an unexpected butyl-demethyl congener is less potent. Overall, this works confirms the interest of biosynthetic pathways which combine a dedicated route to extender unit synthesis and a broad specificity AT domain for producing bioactive derivatives of fully-elaborated complex polyketides.
Collapse
Affiliation(s)
- Li Su
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Yaouba Souaibou
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
- IPHC, UMR 7178, CNRS, Université de Strasbourg, Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognosie Illkirch France
| | - Laurence Hôtel
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
| | | | - Peter Grün
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Yan-Ni Shi
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt Frankfurt am Main Germany
| | | | - Sophie Pinel
- Université de Lorraine, CNRS, CRAN F-54000 Nancy France
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt Frankfurt am Main Germany
- Chemical Biology, Department of Chemistry, Philipps University of Marburg 35043 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg 35043 Marburg Germany
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
| | | |
Collapse
|
4
|
Vennelakanti V, Jeon M, Kulik HJ. Computational Investigation of the Role of Metal Center Identity in Cytochrome P450 Enzyme Model Reactivity. Biochemistry 2025; 64:678-691. [PMID: 39835633 DOI: 10.1021/acs.biochem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle. Our calculations reveal an intermediate-spin ground state for all Fe intermediates while the heavier metals prefer low-spin ground states across most intermediates in the reaction cycle. We also study the rate-determining hydrogen atom transfer (HAT) step and the subsequent rebound step. We observe comparable HAT barriers for Fe and Ru, a much higher barrier for Os, and the lowest HAT barrier for Ir. Rebound steps are barrierless for all metals, and the rebound intermediate for Fe is most significantly stabilized. Examination of ground spin states of all intermediates in the reaction cycle reveals spin-allowed pathways for the group 8 metals and spin-forbidden energetics for the group 9 Ir with potential two-state reactivity. Our work highlights the differences between the group 8 metals and the group 9 Ir, and it suggests that engineered P450 enzymes with Ru in particular result in improved enzyme reactivity toward C-H hydroxylation.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mugyeom Jeon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
6
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 PMCID: PMC11639897 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V. Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | | |
Collapse
|
7
|
Yoneda A, Watanabe T, Kosugi K, Takahara T, Kusaka S, Matsuda R, Saga Y, Kambe T, Kondo M, Masaoka S. Development of a Ru-porphyrin-based supramolecular framework catalyst for styrene epoxidation. Chem Commun (Camb) 2024; 60:13939-13942. [PMID: 39508519 DOI: 10.1039/d4cc03868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A new microporous supramolecular-framework Ru(II)-porphyrin catalyst containing non-covalent interactions between pyrenylphenyl moieties at the meso-position of the porphyrin ring is synthesised and structurally characterised. This recyclable catalyst expedites styrene epoxidation more efficiently than homogeneous Ru-porphyrin catalytic systems.
Collapse
Affiliation(s)
- Akira Yoneda
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kento Kosugi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Teppei Takahara
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
9
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
10
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
11
|
Nsele NN, Padayachee T, Nelson DR, Syed K. Pezizomycetes Genomes Reveal Diverse P450 Complements Characteristic of Saprotrophic and Ectomycorrhizal Lifestyles. J Fungi (Basel) 2023; 9:830. [PMID: 37623601 PMCID: PMC10455484 DOI: 10.3390/jof9080830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme proteins that play a role in organisms' primary and secondary metabolism. P450s play an important role in organism adaptation since lifestyle influences P450 composition in their genome. This phenomenon is well-documented in bacteria but less so in fungi. This study observed this phenomenon where diverse P450 complements were identified in saprophytic and ectomycorrhizal Pezizomycetes. Genome-wide data mining, annotation, and phylogenetic analysis of P450s in 19 Pezizomycetes revealed 668 P450s that can be grouped into 153 P450 families and 245 P450 subfamilies. Only four P450 families, namely, CYP51, CYP61, CYP5093, and CYP6001, are conserved across 19 Pezizomycetes, indicating their important role in these species. A total of 5 saprophyte Pezizomycetes have 103 P450 families, whereas 14 ectomycorrhizal Pezizomycetes have 89 P450 families. Only 39 P450 families were common, and 50 and 64 P450 families, respectively, were unique to ectomycorrhizal and saprophytic Pezizomycetes. These findings suggest that the switch from a saprophytic to an ectomycorrhizal lifestyle led to both the development of diverse P450 families as well as the loss of P450s, which led to the lowest P450 family diversity, despite the emergence of novel P450 families in ectomycorrhizal Pezizomycetes.
Collapse
Affiliation(s)
- Nomfundo Ntombizinhle Nsele
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| |
Collapse
|
12
|
Wang L, Xu Z, Zhang Y, Wang R, Wang J, Yang S, Su J, Li Y. Recent insights into function, structure and modification of cytochrome P450 153 a family. Mol Biol Rep 2023; 50:6955-6961. [PMID: 37355495 DOI: 10.1007/s11033-023-08553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Cytochrome P450 153 A (CYP153A) is a versatile enzyme that can catalyze a wide range of oxidation reactions on various substrates. This review provides a comprehensive overview of the current state of knowledge on CYP153A, including its classification, structure, function, and potential applications in biotechnology and pharmaceuticals. The CYP153A family encompasses many enzymes with different functions on a variety of substrates. We also discuss the structural features that are responsible for the different substrate specificities. Additionally, the enzyme has been engineered to increase its catalytic activity and modifications have been made to enhance its properties further. Despite its potential, challenges and limitations associated with studying and exploiting CYP153A remain, such as low expression levels and substrate inhibition. Nonetheless, ongoing research is exploring new ways to harness the enzyme's capabilities, particularly in synthetic biology, biocatalysis, and drug discovery, making it an exciting target for future research.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Ziqi Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, 250101, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China.
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, 250101, Shandong, China.
| |
Collapse
|
13
|
Permana D, Kitaoka T, Ichinose H. Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnol Bioeng 2023. [PMID: 37139574 DOI: 10.1002/bit.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C-C cleavage, C-C ring formation and expansion, C-C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications.
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (Badan Riset dan Inovasi Nasional (BRIN)), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Bandung, Indonesia
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
14
|
Evolution of Cytochrome P450 Enzymes and Their Redox Partners in Archaea. Int J Mol Sci 2023; 24:ijms24044161. [PMID: 36835573 PMCID: PMC9962201 DOI: 10.3390/ijms24044161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) and their redox partners, ferredoxins, are ubiquitous in organisms. P450s have been studied in biology for over six decades owing to their distinct catalytic activities, including their role in drug metabolism. Ferredoxins are ancient proteins involved in oxidation-reduction reactions, such as transferring electrons to P450s. The evolution and diversification of P450s in various organisms have received little attention and no information is available for archaea. This study is aimed at addressing this research gap. Genome-wide analysis revealed 1204 P450s belonging to 34 P450 families and 112 P450 subfamilies, where some families and subfamilies are expanded in archaea. We also identified 353 ferredoxins belonging to the four types 2Fe-2S, 3Fe-4S, 7Fe-4S and 2[4Fe-4S] in 40 archaeal species. We found that bacteria and archaea shared the CYP109, CYP147 and CYP197 families, as well as several ferredoxin subtypes, and that these genes are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated lateral transfer of these genes from bacteria to archaea. The absence of ferredoxins and ferredoxin reductases in the P450 operons suggests that the lateral transfer of these genes is independent. We present different scenarios for the evolution and diversification of P450s and ferredoxins in archaea. Based on the phylogenetic analysis and high affinity to diverged P450s, we propose that archaeal P450s could have diverged from CYP109, CYP147 and CYP197. Based on this study's results, we propose that all archaeal P450s are bacterial in origin and that the original archaea had no P450s.
Collapse
|
15
|
Smit MS, Maseme MJ, van Marwijk J, Aschenbrenner JC, Opperman DJ. Delineation of the CYP505E subfamily of fungal self-sufficient in-chain hydroxylating cytochrome P450 monooxygenases. Appl Microbiol Biotechnol 2023; 107:735-747. [PMID: 36607403 DOI: 10.1007/s00253-022-12329-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Cytochrome P450 monooxygenases (CYP450s) are abundant in eukaryotes, specifically in plants and fungi where they play important roles in the synthesis and degradation of secondary metabolites. In eukaryotes, the best studied "self-sufficient" CYP450s, with a fused redox partner, belong to the CYP505 family. Members of the CYP505 family are generally considered sub-terminal fatty acid hydroxylases. CYP505E3 from Aspergillus terreus, however, gives remarkable in-chain hydroxylation at the ω-7 position of C10 to C16 alkanes and C12 and C14 fatty alcohols. Because CYP505E3 is a promising catalyst for the synthesis of δ-dodecalactone, we set out to delineate the unique ω-7 hydroxylase activity of CYP505E3. CYP505E3 and six additional CYP505Es as well as four closely related CYP505s from four different subfamilies were expressed in Pichia pastoris. Only the CYP505Es, sharing more than 70% amino acid identity, displayed significant ω-7 hydroxylase activity toward 1-dodecanol, dodecanoic acid, and tetradecanoic acid giving products that can readily be converted to δ-dodecalactone. Concentrations of δ-dodecalactone, directly extracted from dodecanoic acid biotransformations, were higher than previously obtained with E. coli. Searches of the UniProt and NCBI databases yielded a total of only 23 unique CYP505Es, all from the Aspergillaceae. Given that CYP505Es with this remarkable activity occur in only a few Aspergillus and Penicillium spp., we further explored the genetic environments in which they occur. These were found to be very distinct environments which include a specific ABC transporter but could not be linked to apparent secondary metabolite gene clusters. KEY POINTS: • Identified CYP505Es share > 70% amino acid identity. • CYP505Es hydroxylate 1-dodecanol, dodecanoic, and tetradecanoic acid at ω-7 position. • CYP505E genes occur in Aspergillus and Penicillium spp. near an ABC transporter.
Collapse
Affiliation(s)
- Martha Sophia Smit
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa. .,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa.
| | - Mpeyake Jacob Maseme
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Jacqueline van Marwijk
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Jasmin Cara Aschenbrenner
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Diederik Johannes Opperman
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Saprophytic to Pathogenic Mycobacteria: Loss of Cytochrome P450s Vis a Vis Their Prominent Involvement in Natural Metabolite Biosynthesis. Int J Mol Sci 2022; 24:ijms24010149. [PMID: 36613600 PMCID: PMC9820752 DOI: 10.3390/ijms24010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450s/CYPs) are ubiquitous enzymes with unique regio- and stereo-selective oxidation activities. Due to these properties, P450s play a key role in the biosynthesis of natural metabolites. Mycobacterial species are well-known producers of complex metabolites that help them survive in diverse ecological niches, including in the host. In this study, a comprehensive analysis of P450s and their role in natural metabolite synthesis in 2666 mycobacterial species was carried out. The study revealed the presence of 62,815 P450s that can be grouped into 182 P450 families and 345 subfamilies. Blooming (the presence of more than one copy of the same gene) and expansion (presence of the same gene in many species) were observed at the family and subfamily levels. CYP135 was the dominant family in mycobacterial species. The mycobacterial species have distinct P450 profiles, indicating that lifestyle impacts P450 content in their genome vis a vis P450s, playing a key role in organisms' adaptation. Analysis of the P450 profile revealed a gradual loss of P450s from non-pathogenic to pathogenic mycobacteria. Pathogenic mycobacteria have more P450s in biosynthetic gene clusters that produce natural metabolites. This indicates that P450s are recruited for the biosynthesis of unique metabolites, thus helping these pathogens survive in their niches. This study is the first to analyze P450s and their role in natural metabolite synthesis in many mycobacterial species.
Collapse
|
17
|
Pathway and protein engineering for biosynthesis. Synth Syst Biotechnol 2022; 7:1044-1045. [PMID: 35801091 PMCID: PMC9241027 DOI: 10.1016/j.synbio.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|