1
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Han Y, Huang Y, Israr M, Li H, Zhang W. Advances in biosynthesis of 7-Dehydrocholesterol through de novo cell factory strategies. BIORESOURCE TECHNOLOGY 2025; 418:131888. [PMID: 39603472 DOI: 10.1016/j.biortech.2024.131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
7-Dehydrocholesterol (7-DHC) is an important sterol for maintaining human health and is present in the skin. After sun exposure, 7-DHC in the skin is converted to vitamin D3 to strengthen the immune system. In recent years, synthetic biology has gained importance due to the effective and efficient production of various important compounds using microorganisms. Despite the understanding of the mechanisms and pathways of 7-DHC biosynthesis, achieving higher production yields remains a significant challenge. This review aims to provide a comprehensive overview of the current state of 7-DHC biosynthesis. Various synthetic strategies including optimization of rate-limiting enzymes, metabolic fluxes, redox balance, and subcellular localization are discussed. Moreover, the role of omics technology in designing important proteins and gene editing techniques for strain modification to efficiently synthesize 7-DHC will also be discussed.
Collapse
Affiliation(s)
- Yuchen Han
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China
| | - Yawen Huang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China
| | - Muhammad Israr
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin 300308, PR China.
| | - Wuyuan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin 300308, PR China.
| |
Collapse
|
3
|
Xiang L, Sun W, Zhang S, Zhang H, Lv B, Qin L, Li C. Discovery, Biomanufacture, and Derivatization of Licorice Triterpenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4-29. [PMID: 39644261 DOI: 10.1021/acs.jafc.4c08110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Triterpenoids are the major active constituents of licorice, a well-known traditional medicinal herb. Licorice triterpenoids, represented by glycyrrhizin and glycyrrhetic acid, have a high structural diversity and are excellent lead compounds for the development of potent pharmaceuticals. However, their further application can be limited by insufficient activities, low bioavailability, and the presence of side effects, as well as the inefficiency of traditional plant extraction processes for compound production. To address these issues, researchers are focusing on rare triterpenoid components in the genus Glycyrrhiza and developing derivatives to preserve or enhance the original physiological activities with improved bioavailability and reduced side effects. At the same time, synthetic biology offers opportunities to shorten the production cycle, create eco-friendly manufacturing processes, and reduce the cost of producing licorice triterpenoids. Although much progress has been achieved in this field in recent years, there is still a lack of a comprehensive review to summarize the overall characteristics of licorice triterpenoids rather than glycyrrhizin and glycyrrhetinic acid. Based on this, our review comprehensively outlines the structures, origins, and pharmacological activities of licorice triterpenoids and predicts their pharmacological activities using the drugCIPHER algorithm. Furthermore, this paper reviews the advances and strategies for the biomanufacturing of licorice triterpenoids using synthetic biology methods and outlines the perspectives and structure-activity relationships for the derivatization of licorice triterpenoids. This review provides new insights into the discovery and synthesis of pharmaceuticals derived from natural triterpenes.
Collapse
Affiliation(s)
- Lin Xiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Siqin Zhang
- Department of Automation, Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Tsinghua University, Beijing 100084, China
| | - Haocheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Majeed HN, Shaheen S, Saleem S, Aleem S, Sattar N, Zahoor MK, Ahmad A. Structure Analysis and Site-Directed Mutagenesis of the Glycosyltransferase UGT71B8 Leads to Increased Stability and Substrate Activity in Arabidopsis thaliana. Crit Rev Eukaryot Gene Expr 2025; 35:1-12. [PMID: 39957589 DOI: 10.1615/critreveukaryotgeneexpr.2024054550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The uridine diphosphate-glycosyltransferase (UGT) family catalyses the glucuronidation of the glycosyl group of a nucleotide sugar to an acceptor compound (substrate), it serves as controlling reaction for bioactivity, storage and decrease toxicity of different compounds in living organisms. UGT71B8 belongs to 71B family of UGTs and its donor sugars are UDP glucose, UDP galactose and UDP 5S glucose, respectively. The current study was designed to induce site-directed mutagenesis (SDM) to investigate the activity in UGT71B8 enzyme. During first step, in silico conformational change through 3D structure model was drawn and it was found that all the amino acids of mutation site were found in allowed region. The relative surface accessibility (RSA) and absolute surface accessibility (ASA) of UGT71B8 were found as 0.042-0.037 and 7.424, respectively, which shows that UGT71B8 T138M remains stable after SDM. This prediction model thus led to the efficacious mutation of UGT71B8 enzyme. Mass spectrometric analysis of UGT71B8T138M showed reduced activity with its substrate UDP glucose and kaempherol as acceptor molecule. Moreover, no new substrate activity of UGT71B8 was found. This data would direct future endeavors to engineer more glycosyltransferases of plants to augment its activity with different substrates and provide a basis for more exploration of UGT71B8 as an active compound for potential anti-cancer therapeutics.
Collapse
Affiliation(s)
| | - Sumera Shaheen
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Sadaf Saleem
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Sobia Aleem
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naila Sattar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | | | - Aftab Ahmad
- Department of Biochemistry/US-Pakistan Centre for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Zhang Y, Pan X, Shi T, Gu Z, Yang Z, Liu M, Xu Y, Yang Y, Ren L, Song X, Lin H, Deng K. P450Rdb: A manually curated database of reactions catalyzed by cytochrome P450 enzymes. J Adv Res 2024; 63:35-42. [PMID: 37871773 PMCID: PMC11380020 DOI: 10.1016/j.jare.2023.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Cytochrome P450 enzymes (P450s) are recognized as the most versatile catalysts worldwide, playing vital roles in numerous biological metabolism and biosynthesis processes across all kingdoms of life. Despite the vast number of P450 genes available in databases (over 300,000), only a small fraction of them (less than 0.2 %) have undergone functional characterization. OBJECTIVES To provide a convenient platform with abundant information on P450s and their corresponding reactions, we introduce the P450Rdb database, a manually curated resource compiles literature-supported reactions catalyzed by P450s. METHODS All the P450s and Reactions were manually curated from the literature and known databases. Subsequently, the P450 reactions organized and categorized according to their chemical reaction type and site. The website was developed using HTML and PHP languages, with the MySQL server utilized for data storage. RESULTS The current version of P450Rdb catalogs over 1,600 reactions, involving more than 590 P450s across a diverse range of over 200 species. Additionally, it offers a user-friendly interface with comprehensive information, enabling easy querying, browsing, and analysis of P450s and their corresponding reactions. P450Rdb is free available at http://www.cellknowledge.com.cn/p450rdb/. CONCLUSIONS We believe that this database will significantly promote structural and functional research on P450s, thereby fostering advancements in the fields of natural product synthesis, pharmaceutical engineering, biotechnological applications, agricultural and crop improvement, and the chemical industry.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrun Pan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianyu Shi
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhifeng Gu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhaochang Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Minghao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yi Xu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu Yang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
7
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Lethe MCL, Bui D, Hu M, Wang X, Singh R, Chan CTY. Discovering New Substrates of a UDP-Glycosyltransferase with a High-Throughput Method. Int J Mol Sci 2024; 25:2725. [PMID: 38473971 PMCID: PMC10931590 DOI: 10.3390/ijms25052725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.
Collapse
Affiliation(s)
- Mary C. L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
- Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
9
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Wang M, Ji Q, Lai B, Liu Y, Mei K. Structure-function and engineering of plant UDP-glycosyltransferase. Comput Struct Biotechnol J 2023; 21:5358-5371. [PMID: 37965058 PMCID: PMC10641439 DOI: 10.1016/j.csbj.2023.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Natural products synthesized by plants have substantial industrial and medicinal values and are therefore attracting increasing interest in various related industries. Among the key enzyme families involved in the biosynthesis of natural products, uridine diphosphate-dependent glycosyltransferases (UGTs) play a crucial role in plants. In recent years, significant efforts have been made to elucidate the catalytic mechanisms and substrate recognition of plant UGTs and to improve them for desired functions. In this review, we presented a comprehensive overview of all currently published structures of plant UGTs, along with in-depth analyses of the corresponding catalytic and substrate recognition mechanisms. In addition, we summarized and evaluated the protein engineering strategies applied to improve the catalytic activities of plant UGTs, with a particular focus on high-throughput screening methods. The primary objective of this review is to provide readers with a comprehensive understanding of plant UGTs and to serve as a valuable reference for the latest techniques used to improve their activities.
Collapse
Affiliation(s)
- Mengya Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qiushuang Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yirong Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Kunrong Mei
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Yang G, Hu Z, Wang Y, Mo H, Liu S, Hou X, Wu X, Jiang H, Fang Y. Engineering chitin deacetylase AsCDA for improving the catalytic efficiency towards crystalline chitin. Carbohydr Polym 2023; 318:121123. [PMID: 37479438 DOI: 10.1016/j.carbpol.2023.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Chitin deacetylase (CDA) catalyzing the deacetylation of crystal chitin is a crucial step in the biosynthesis of chitosan, and also a scientific problem to be solved, which restricts the high-value utilization of chitin resources. This study aims to improve the catalytic efficiency of AsCDA from Acinetobacter schindleri MCDA01 by a semi-rational design using alanine scanning mutagenesis and saturation mutagenesis. The quadruple mutant M11 displayed a 2.31 and 1.73-fold improvement in kcat/Km and specific activity over AsCDA, which can remove 68 % of the acetyl groups from α-chitin. Furthermore, structural analysis suggested that additional hydrogen bonds, contributing the flexibility of amino acids and increasing the negative charge in M11 increased the catalytic efficiency. The microstructure changes of α-chitin pretreated by the mutant M11 were observed and evaluated using 13C CP/MAS NMR spectroscopy, FT-IR spectroscopy, XRD and SEM, and the results showed that M11 more efficiently catalyzed the release of acetyl groups from α-chitin. This study would provide a theoretical basis for the molecular modification of CDAs and accelerate the process of industrial production of chitosan by CDAs.
Collapse
Affiliation(s)
- Guang Yang
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Hu
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuhan Wang
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongjuan Mo
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yaowei Fang
- College of Food Science and Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
12
|
Li J, Wang S, Miao Y, Wan Y, Li C, Wang Y. Mining and modification of Oryza sativa-derived squalene epoxidase for improved β-amyrin production in Saccharomyces cerevisiae. J Biotechnol 2023; 375:1-11. [PMID: 37597655 DOI: 10.1016/j.jbiotec.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
β-Amyrin is a pentacyclic triterpenoid and has anti-viral, anti-bacterial and anti-inflammatory activities. The synthetic pathway of β-amyrin has been analyzed and its heterogeneous synthesis has been achieved in Saccharomyces cerevisiae. Squalene epoxidase (SQE) catalyzes the oxygenation of squalene to form 2,3-oxidosqualene and is rate-limiting in the synthetic pathways of β-amyrin. The endogenous SQE in S. cerevisiae is insufficient for high production of β-amyrin. Herein, eight squalene epoxidases derived from different plants were selected and characterized in S. cerevisiae for improved biosynthesis of β-amyrin. Among them, the squalene epoxidase from Oryza sativa (OsSQE52) showed the best performance compared to other plant-derived sources. Through protein remodeling, the mutant OsSQE52L256R, obtained based on modeling analysis, increased the titer of β-amyrin by 2.43-fold compared to that in the control strain with ERG1 overexpressed under the same conditions. Moreover, the expression of OsSQE52L256R was optimized with the improvement of precursor supply to further increase the production of β-amyrin. Finally, the constructed strains produced 66.97 mg/L β-amyrin in the shake flask, which was 6.45-fold higher than the original strain. Our study provides alternative SQEs for efficient production of β-amyrin as well as other triterpenoids derived from 2,3-oxidosqualene.
Collapse
Affiliation(s)
- Jinling Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yinan Miao
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ya Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
13
|
Sulekha A, Osborne MJ, Gasiorek J, Borden KLB. 1H, 13C, 15N Backbone and sidechain chemical shift assignments of the C-terminal domain of human UDP-glucuronosyltransferase 2B17 (UGT2B17-C). BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:67-73. [PMID: 36757531 DOI: 10.1007/s12104-023-10122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 06/02/2023]
Abstract
UDP-glucuronosyltransferases are the principal enzymes involved in the glucuronidation of metabolites and xenobiotics for physiological clearance in humans. Though glucuronidation is an indispensable process in the phase II metabolic pathway, UGT-mediated glucuronidation of most prescribed drugs (> 55%) and clinical evidence of UGT-associated drug resistance are major concerns for therapeutic development. While UGTs are highly conserved enzymes, they manifest unique substrate and inhibitor specificity which is poorly understood given the dearth of experimentally determined full-length structures. Such information is important not only to conceptualize their specificity but is central to the design of inhibitors specific to a given UGT in order to avoid toxicity associated with pan-UGT inhibitors. Here, we provide the 1H, 13C and 15N backbone (~ 90%) and sidechain (~ 62%) assignments for the C-terminal domain of UGT2B17, which can be used to determine the molecular binding sites of inhibitor and substrate, and to understand the atomic basis for inhibitor selectivity between UGT2B17 and other members of the UGT2B subfamily. Given the physiological relevance of UGT2B17 in the elimination of hormone-based cancer drugs, these assignments will contribute towards dissecting the structural basis for substrate specificity, selective inhibitor recognition and other aspects of enzyme activity with the goal of selectively overcoming glucuronidation-based drug resistance.
Collapse
Affiliation(s)
- Anamika Sulekha
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Michael J Osborne
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Jadwiga Gasiorek
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Katherine L B Borden
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada.
| |
Collapse
|
14
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives. Molecules 2023; 28:molecules28031437. [PMID: 36771109 PMCID: PMC9921939 DOI: 10.3390/molecules28031437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Ginsenosides are major bioactive compounds present in the Panax species. Ginsenosides exhibit various pharmaceutical properties, including anticancer, anti-inflammatory, antimetastatic, hypertension, and neurodegenerative disorder activities. Although several commercial products have been presented on the market, most of the current chemical processes have an unfriendly environment and a high cost of downstream processing. Compared to plant extraction, microbial production exhibits high efficiency, high selectivity, and saves time for the manufacturing of industrial products. To reach the full potential of the pharmaceutical resource of ginsenoside, a suitable microorganism has been developed as a novel approach. In this review, cell biological mechanisms in anticancer activities and the present state of research on the production of ginsenosides are summarized. Microbial hosts, including native endophytes and engineered microbes, have been used as novel and promising approaches. Furthermore, the present challenges and perspectives of using microbial hosts to produce ginsenosides have been discussed.
Collapse
|