1
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Chen J, Huang L, Ye BC, Zhou Y. Combinatorial metabolic engineering of Yarrowia lipolytica for high-level production of the plant-derived diterpenoid sclareol. Microb Cell Fact 2025; 24:110. [PMID: 40380140 PMCID: PMC12082891 DOI: 10.1186/s12934-025-02744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Sclareol, a diterpene alcohol derived from Salvia sclarea, is primarily used in the synthesis of ambrox, an alternative to the expensive spice ambergris. However, commercial production of sclareol from plant extraction is costly and environmentally problematic, limiting its scalability. Recent advances in synthetic biology have enabled the construction of efficient cell factories for sclareol synthesis, offering a more sustainable solution. RESULTS In this study, we engineered Yarrowia lipolytica to produce sclareol by integrating genes encoding (13E)-8α-hydroxylabden-15-yl diphosphate synthase (LPPS) and sclareol synthase (SCS). Sclareol titers were further enhanced through the fusion of SsSCS and SsLPPS proteins, as well as multi-copy gene integration. To increase the precursor geranylgeranyl diphosphate (GGPP), we overexpressed various geranylgeranyl diphosphate synthases (GGS1), resulting in significant accumulation of GGPP. Additionally, optimization of the mevalonate pathway, coupled with the downregulation of lipid synthesis and upregulation of lipid degradation, directed more acetyl CoA towards sclareol production. CONCLUSIONS In this study, we reprogrammed the metabolism of Y. lipolytica by combinatorial metabolic engineering with a sclareol titer of 2656.20 ± 91.30 mg/L in shake flasks. Our findings provide a viable strategy for utilizing Y. lipolytica as a microbial cell factory to produce sclareol.
Collapse
Affiliation(s)
- Jiang Chen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Longzheng Huang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Liu X, Yang S, Liu L. Causal effect of gut microbiota metabolic pathways on CSAG1 expression in chondrosarcoma: a mendelian randomization analysis. BMC Cancer 2025; 25:852. [PMID: 40346495 PMCID: PMC12065177 DOI: 10.1186/s12885-025-14281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/06/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Changes in gut microbiota metabolism might play an important role in the development of some cancers. However, the causal relationships of gut microbiome-related metabolic pathways in chondrosarcomas and the specific pathways affected remain largely unknown. METHODS We used two-sample bidirectional and multivariate Mendelian randomization (MR) to reveal a causal relationship between the gut microbiota metabolic pathway (GMMP) and chondrosarcoma associated gene 1(CSAG1) via the largest available genome-wide association study (GWAS). RESULTS Univariate MR analysis revealed that tetrapyrrole biosynthesis from glutamate, menaquinol 6 biosynthesis, glycogen degradation II, 8-amino-7-oxononanoate biosynthesis, taxadiene biosynthesis, glycolysis and tRNA charging had a significant causal relationship with CSAG1.Multivariate MR analysis suggested that tetrapyrrole biosynthesis, menaquinol 6 biosynthesis, glycogen degradation II, glycolysis and tRNA charging still had a significant causal effect on CSAG1. According to the results of reverse MR analysis, no significant causal effect of CSAG1 on the GMMP was found. CONCLUSIONS This study offers further insights into the gut microbiota-mediated mechanism of chondrosarcoma development.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of General Medical, The People's Hospital of Changzhi City, The Third Clinical Hospital of Changzhi Medical University, 502 Changxing Middle Road, Changzhi, Shanxi Province, 046000, China.
| | - Sen Yang
- Department of Orthopedics, The People's Hospital of Changzhi City, The Third Clinical Hospital of Changzhi Medical University, 502 Changxing Middle Road, Changzhi, Shanxi Province, 046000, China.
| | - Liyun Liu
- Department of Clinical Medicine, The Peace Hospital of Changzhi City, The First Clinical Hospital of Changzhi Medical University, 110 Yan'an South Road, Changzhi, Shanxi Province, 046000, China
| |
Collapse
|
4
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
5
|
Karaca H, Kaya M, Kapkac HA, Levent S, Ozkay Y, Ozan SD, Nielsen J, Krivoruchko A. Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production. Microb Cell Fact 2024; 23:241. [PMID: 39242505 PMCID: PMC11380192 DOI: 10.1186/s12934-024-02512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Metabolic engineering enables the sustainable and cost-efficient production of complex chemicals. Efficient production of terpenes in Saccharomyces cerevisiae can be achieved by recruiting an intermediate of the mevalonate pathway. The present study aimed to evaluate the engineering strategies of S. cerevisiae for the production of taxadiene, a precursor of taxol, an antineoplastic drug. RESULT SCIGS22a, a previously engineered strain with modifications in the mevalonate pathway (MVA), was used as a background strain. This strain was engineered to enable a high flux towards farnesyl diphosphate (FPP) and the availability of NADPH. The strain MVA was generated from SCIGS22a by overexpressing all mevalonate pathway genes. Combining the background strains with 16 different episomal plasmids, which included the combination of 4 genes: tHMGR (3-hydroxy-3-methylglutaryl-CoA reductase), ERG20 (farnesyl pyrophosphate synthase), GGPPS (geranyl diphosphate synthase) and TS (taxadiene synthase) resulted in the highest taxadiene production in S. cerevisiae of 528 mg/L. CONCLUSION Our study highlights the critical role of pathway balance in metabolic engineering, mainly when dealing with toxic molecules like taxadiene. We achieved significant improvements in taxadiene production by employing a combinatorial approach and focusing on balancing the downstream and upstream pathways. These findings emphasize the importance of minor gene expression modification levels to achieve a well-balanced pathway, ultimately leading to enhanced taxadiene accumulation.
Collapse
Affiliation(s)
- Hulya Karaca
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, SE, Sweden.
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskisehir, 26471, Turkey.
| | - Murat Kaya
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskisehir, 26471, Turkey
| | - Handan Açelya Kapkac
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Eskisehir, 26471, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, 26471, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, 26471, Turkey
| | - Secil Deniz Ozan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskisehir, 26471, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, SE, Sweden
| | - Anastasia Krivoruchko
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, SE, Sweden
| |
Collapse
|
6
|
Zhang Y, Zhang X, Liu H, Hou J, Liu M, Qi Q. Efficient production of 2'-fucosyllactose in unconventional yeast Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:716-723. [PMID: 38053583 PMCID: PMC10694633 DOI: 10.1016/j.synbio.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuejing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Li C, Qi Y, Sun Z, Jiang M, Li C. Way to efficient microbial paclitaxel mass production. Synth Syst Biotechnol 2023; 8:673-681. [PMID: 37954482 PMCID: PMC10632112 DOI: 10.1016/j.synbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The microbial synthesis of paclitaxel is attractive for its short-cycle, cost-effectiveness, and sustainability. However, low paclitaxel productivity, depleted capacity during subculture and storage, and unclear biosynthesis mechanisms restrain industrial microbial synthesis. Along with the isolation of various paclitaxel-producing microorganisms and the development of versatile molecular tools, tremendous promises for microbial paclitaxel synthesis have become increasingly prominent. In this review, we summarize the progress of microbial synthesis of paclitaxel in recent years, focusing on paclitaxel-producing endophytes and representative engineering microorganism hosts that were used as chassis for paclitaxel precursor synthesis. Numerous wide-type microbes can manufacture paclitaxel, and fermentation process optimization and strain improvement can greatly enhance the productivity. Engineered microbes can efficiently synthesize precursors of paclitaxel by introducing exogenous synthetic pathway. Mining paclitaxel synthetic pathways and genetic manipulation of endophytes will accelerate the construction of microbial cell factories, indefinitely contributing to paclitaxel mass production by microbes. This review emphasizes the potential and provides solutions for efficient microbial paclitaxel mass production.
Collapse
Affiliation(s)
- Chenyue Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Qi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Nanyang Institute of Medical Plant Technology and Industry, Nanyang, 473005, China
| | - Mengwan Jiang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|