1
|
Siziya IN, Lim HJ, Jung DH, Baek S, Lee S, Seo MJ. Enhancement of iminosugar production, 1-deoxynojirimycin and 1-deoxymannojirimycin, in recombinant Corynebacterium glutamicum. Food Sci Biotechnol 2025; 34:2225-2235. [PMID: 40351729 PMCID: PMC12064549 DOI: 10.1007/s10068-025-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 01/26/2025] [Indexed: 05/14/2025] Open
Abstract
The iminosugars 1-deoxynojirimycin (1-DNJ) and 1-deoxymannojirimycin (1-DMJ) were produced by recombinant Corynebacterium glutamicum (CgTYB) bearing the 1-DNJ-producing GabT1-Yktc1-GutB1 (TYB) gene cluster from Bacillus velezensis MBLB0692. The enhanced iminosugar biosynthesis in CgTYB cultures increased both α-mannosidase inhibition (AMI) and α-glucosidase inhibition (AGI) activity. Individual cultures harboring GabT1, Yktc1, and GutB1 genes were found to be able to produce both 1-DNJ and 1-DMJ in mixed cultures of one pot analysis. This suggests that the genes necessary for epimerization and reduction are intrinsic to the cells rather than close to the 1-DNJ-producing cluster. Glucose was the preferred carbon source and a provision of 10 g/L glucose increased AGI and AMI to 69.8% and 70.1%, respectively. The 1 mM IPTG produced 55.0% AGI and 72.1% AMI, and 20% ethanolic permeabilization produced 62.8% AGI and 74.2% AMI. Batch fermentation increased iminosugar yields from 18.7 to 229.9 mg/L 1-DNJ, and 41.8 to 63.7 mg/mL 1-DMJ. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01834-x.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan, 48513 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012 Republic of Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
2
|
Ma J, Ye Y, He R, Xiong Y, Xiao R, Wang K, Zhang Y, Wu X. Enrichment of deoxynojirimycin in mulberry using cation exchange resin: Adsorption/desorption characteristics and process optimization. Food Chem 2025; 463:141281. [PMID: 39288465 DOI: 10.1016/j.foodchem.2024.141281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Deoxynojirimycin (DNJ) is an α-glucosidase inhibitor with high food values. However, the complex and costly enrichment processes have greatly prevented its application. Herein, this study aimed to propose a simple and efficient enrichment process for DNJ from Morus alba L. extracts using cation exchange resins. The LSI and D113 resins were chosen due to their excellent adsorption and desorption properties. The adsorption characteristics agreed with the pseudo-first-order kinetic model and the Langmuir isotherm model. This adsorption was chemisorption, spontaneous, endothermic and entropy-driven. Furthermore, the concentration and pH of the extracts, desorption solvent, breakthrough and elution curves, sample loading and elution rate were investigated to optimize the enrichment process by resin column chromatography. The results also showed that the purity of DNJ was improved to 44.00 % with a total recovery of 78.21 % using the LSI-D113 combination strategy. This research demonstrated the industrial feasibility of DNJ enrichment using cation exchange resins.
Collapse
Affiliation(s)
- Jilong Ma
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yiqian Ye
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rushi He
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yan Xiong
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Ruqi Xiao
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Kang Wang
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Youfa Zhang
- Hunan Jiecui Biotechnology Co., Ltd, Xiangtan 412007, China
| | - Xuewen Wu
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Han S, Zhao Y, Mou F, Yang Z, Li N, Cheng M, Xie H, Qin B, Tang Y. Screening and Selection of a New Medium and Culture Conditions for Diosgenin Production via Microbial Biocatalysis of SYt1. Bioengineering (Basel) 2024; 11:1098. [PMID: 39593758 PMCID: PMC11592201 DOI: 10.3390/bioengineering11111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Diosgenin (DSG) is a phytosterol saponin mainly found in Dioscorea zingiberensis C.H. Wright. It has shown promising results in treating various diseases such as cancer, diabetes, arthritis, asthma, and cardiovascular diseases. Diosgenin is also an important medicinal chemical for synthesizing various steroid medicines. The production of diosgenin by acid hydrolysis generates a large amount of wastewater, leading to severe environmental pollution. However, producing diosgenin through microbial fermentation can effectively reduce environmental pollution. Numerous studies have demonstrated that various microorganisms can produce diosgenin via solid-state fermentation. Nevertheless, due to the complexity, high maintenance costs, uneven heat production, and other characteristics of solid-state fermentation, it is not commonly used in the industrial production of diosgenin. In contrast, liquid fermentation offers advantages such as simple operation, easy maintenance, and stable fermentation, making it more suitable for the industrial production of diosgenin. However, few studies have focused on producing diosgenin using liquid fermentation. In this study, endophytic Bacillus licheniformis SYt1 was used to produce diosgenin via liquid fermentation, with Dioscorea tuber powder as a substrate. Soxhlet extraction and silica gel column chromatography were employed to identify the diosgenin from the liquid fermentation products. Suitable fermentation conditions were screened and identified. The environmental variables that significantly affect the diosgenin yield were determined by the Plackett-Burman design (P-BD) with eight factors. The three factors (peptone, yeast extract powder and inorganic salt) with the greatest influence on the diosgenin yield were selected and further optimized using a response surface methodology (RSM). The final culture conditions were determined to be 35.79 g/L of peptone, 14.56 g/L of yeast extract powder, and 1.44 g/L of inorganic salt. The yield of diosgenin under these conditions was 132.57 mg/L, which was 1.8 times greater than the yield under pre-optimization conditions. This effective, clean, and promising liquid fermentation method possesses the potential to replace the traditional acid hydrolysis method for the industrial production of diosgenin.
Collapse
Affiliation(s)
- Shiyao Han
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Yiyu Zhao
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Fangyuan Mou
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhen Yang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Ningxiao Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Mengqi Cheng
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Heshaungyi Xie
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| | - Baofu Qin
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Young Tang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China (Y.Z.); (Z.Y.)
| |
Collapse
|
5
|
You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR Engineering Enables Fine-Tuning of Multiple Genes within Operons to Balance Metabolic Flux in Bacillus subtilis. BIOLOGY 2024; 13:277. [PMID: 38666889 PMCID: PMC11047901 DOI: 10.3390/biology13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yifan Wang
- Department of Food Science and Technology, Texas A & M University, College Station, TX 77843, USA;
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|