1
|
Yoshizaki K, Frias DP, Maier K, Smelan J, Correia AT, Oliveira LMDS, Amato-Lourenço LF, Santillo BT, Prado CM, Oshiro TM, Barbuto JAM, Mauad T, Macchione M. Exposure of cinnamyl alcohol in co-culture of BEAS-2B and dendritic cells: Interaction between CYP450 and cytokines. J Appl Toxicol 2024; 44:1317-1328. [PMID: 38715282 DOI: 10.1002/jat.4623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 08/16/2024]
Abstract
The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.
Collapse
Affiliation(s)
- Kelly Yoshizaki
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Daniela Perroni Frias
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Kevin Maier
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Juliana Smelan
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Aristides Tadeu Correia
- Thoracic Surgery Division, Department of Cardiopneumology, InCor, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Fernando Amato-Lourenço
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
- Institute of Advanced Studies (IEA) Global Cities Program, University of São Paulo, São Paulo, Brazil
| | - Bruna Tereso Santillo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiences, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Environmental Pathology, Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| |
Collapse
|
2
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
3
|
Bruze M, Marmgren V, Zimerson E, Antelmi A, Svedman C, Mowitz M. Contact allergy to oxidised geraniol may be over-represented in individuals with photocontact allergy to ketoprofen. Contact Dermatitis 2024; 90:79-83. [PMID: 37840237 DOI: 10.1111/cod.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Simultaneous overrepresentations of contact allergies and photocontact allergies are common in individuals with photocontact allergy to ketoprofen. AIMS To investigate whether contact allergy to oxidised (ox.) geraniol, geraniol, geranial, neral and citral is overrepresented in individuals with photocontact allergy to ketoprofen. METHODS The contact allergy rates to ox. geraniol, geraniol, geranial, neral and citral in routinely patch tested dermatitis patients were compared with the corresponding rates in individuals with photocontact allergy to ketoprofen. RESULTS Allergic patch test reactions were noted to ox. geraniol 11% (n = 39, 5.8%), ox. geraniol 6% (n = 12, 1.8%), geraniol 6% (n = 2, 0.3%), geranial (n = 18, 2.7%), neral (n = 7, 1.0%) and citral (n = 15, 2.2%). In those four patients who were diagnosed with photocontact allergy to ketoprofen during the test period, a significant overrepresentation (p = 0.020) of simultaneous contact allergy to ox. geraniol 11% was demonstrated. Overrepresentation of simultaneous contact allergy to various combinations of ox. geraniol, ox. limonene and ox. linalool was also noted in ketoprofen-photoallergic patients. CONCLUSIONS Contact allergy to ox. geraniol, geranial and citral is common in routinely tested dermatitis patients. There is an overrepresentation of simultaneous contact allergy to ox. geraniol, ox. limonene and ox. linalool in patients with photocontact allergy to ketoprofen.
Collapse
Affiliation(s)
- Magnus Bruze
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Victoria Marmgren
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Erik Zimerson
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Annarita Antelmi
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Martin Mowitz
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Shidoji Y. Geranylgeranoic acid, a bioactive and endogenous fatty acid in mammals: a review. J Lipid Res 2023:100396. [PMID: 37247782 PMCID: PMC10320608 DOI: 10.1016/j.jlr.2023.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Geranylgeranoic acid (GGA) was first reported in 1983 as one of the mevalonic acid (MVA) metabolites, but its biological significance was not studied for a long time. Our research on the antitumor effects of retinoids led us to GGA, one of the acyclic retinoids that induce cell death in human hepatoma-derived cell lines. We were able to demonstrate the presence of endogenous GGA in various tissues of male rats, including the liver, testis, and cerebrum, by LC-MS/MS. Furthermore, the biosynthesis of GGA from MVA in mammals including humans was confirmed by isotopomer spectral analysis using 13C-labeled mevalonolactone and cultured hepatoma cells, and the involvement of hepatic monoamine oxidase B (MAOB) in the biosynthesis of GGA was also demonstrated. The biological activity of GGA was analyzed from the retinoid (differentiation induction) and non-retinoid (cell death induction) aspects, and in particular, the non-retinoid mechanism by which GGA induces cell death in hepatoma cells was found to involve pyroptosis via ER-stress responses initiated by TLR4 signaling. In addition to these effects of GGA, we also describe the in vivo effects of GGA on reproduction. In this review, based mainly on our published papers, we have shown that hepatic MAOB is involved in the biosynthesis of GGA and that GGA induces cell death in human hepatoma-derived cell lines by non-canonical pyroptosis, one of the mechanisms of sterile inflammatory cell death.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Molecular and Cellular Biology, University of Nagasaki, Nagayo, Nagasaki, Japan.
| |
Collapse
|
5
|
Peter N, Lichter J, Hagvall L, Bock U, Blömeke B. Common fragrance chemicals activate dendritic cells in coculture with keratinocytes. Contact Dermatitis 2023. [PMID: 37088539 DOI: 10.1111/cod.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Fragrances are important contact allergens; however, investigation of their skin sensitization potency has been challenging in new approach methods (NAMs). Many fragrance chemicals are susceptible to autoxidation or can be metabolized by enzymes constitutively expressed in skin keratinocytes. Strong sensitizers can be formed in both of these processes. Further, keratinocytes can modulate the dendritic cell (DC) activation and maturation potential, a key event in the acquisition of contact allergy. OBJECTIVES To evaluate the 2D coculture model consisting of keratinocytes and DCs using different weak to moderate sensitizing fragrance chemicals. Further, to investigate fragrances and related oxidation products in the in vitro model and compare to in vivo data. METHODS Chemicals were tested in the coculture activation test (COCAT), consisting of HaCaT keratinocytes and THP-1 cells. THP-1 cell surface expression of costimulatory and adhesion molecules (CD86 and CD54) collected after 24 h incubation with the chemicals was analysed using flow cytometry. RESULTS Twenty-four molecules were tested positive, three were negative (n = 27). Four pairs were evaluated, with aldehydes showing a 6- to 13-fold stronger responses compared to their corresponding alcohols. CONCLUSIONS Results provide insight into the activation of DC in their natural environment of keratinocytes. α,β-Unsaturated alcohols were classified as weaker sensitizers compared to their corresponding aldehydes. In sum, testing of fragrances retrieved results in good agreement with in vivo data.
Collapse
Affiliation(s)
- Niklas Peter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Jutta Lichter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Lina Hagvall
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Udo Bock
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - Brunhilde Blömeke
- Department of Environmental Toxicology, Trier University, Trier, Germany
| |
Collapse
|
6
|
Hepatic CYP3A4 Enzyme Compensatively Maintains Endogenous Geranylgeranoic Acid Levels in MAOB-Knockout Human Hepatoma Cells. Metabolites 2022; 12:metabo12020140. [PMID: 35208214 PMCID: PMC8880059 DOI: 10.3390/metabo12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Geranylgeranoic acid (GGA), developed as a preventive agent against second primary hepatoma, has been reported to be biosynthesized via the mevalonate pathway in human hepatoma-derived cells. Recently, we found that monoamine oxidase B (MAOB) catalyzed the oxidation of geranylgeraniol (GGOH) to produce geranylgeranial (GGal), a direct precursor of endogenous GGA in hepatoma cells, using tranylcypromine, an inhibitor of MAOs, and knockdown by MAOB siRNA. However, endogenous GGA level was unexpectedly unchanged in MAOB-knockout (KO) cells established using the CRISPR-Cas9 system, suggesting that some other latent metabolic pathways maintain endogenous GGA levels in the MAOB-KO cells. Here, we investigated the putative latent enzymes that oxidize GGOH in Hep3B/MAOB-KO cells. First, the broad-specific cytochrome P450 enzyme inhibitors decreased the amount of endogenous GGA in Hep3B/MAOB-KO cells in a dose-dependent manner. Second, among the eight members of cytochrome P450 superfamily that have been suggested to be involved in the oxidation of isoprenols and/or retinol in previous studies, only the CYP3A4 gene significantly upregulated its cellular mRNA level in Hep3B/MAOB-KO cells. Third, a commercially available recombinant human CYP3A4 enzyme was able to oxidize GGOH to GGal, and fourth, the knockdown of CYP3A4 by siRNA significantly reduced the amount of endogenous GGA in Hep3B/MAOB-KO cells. These results indicate that CYP3A4 can act as an alternative oxidase for GGOH when hepatic MAOB is deleted in the human hepatoma-derived cell line Hep3B, and that endogenous GGA levels are maintained by a multitude of enzymes.
Collapse
|
7
|
de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2021; 63:1352-1389. [PMID: 34387521 DOI: 10.1080/10408398.2021.1963945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Brunna Genaro
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Lamesa Costa
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Foti C, Bonamonte D, Romita P, Guarneri F, Patruno C, Angelini G. Common Allergens. CLINICAL CONTACT DERMATITIS 2021:437-497. [DOI: 10.1007/978-3-030-49332-5_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Contact Allergy to Fragrances. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Jäger T, Bäcker S, Brodbeck T, Leibold E, Bader M. Quantitative determination of urinary metabolites of geraniol by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5718-5728. [PMID: 33220670 DOI: 10.1039/d0ay01582b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Geraniol is a fragrance which occurs in natural terpene oil or is chemically synthesized on a large scale. It is used in a wide variety of consumer products such as perfumes, deodorants, household products and cosmetics. Hence, not only industry workers in the production of geraniol, but also consumers can come into contact with the substance. Human biomonitoring (HBM), i.e. the analytical determination of substances and their metabolites in human biological material, is a key element in the analysis and assessment of the distribution and intensity of occupational and environmental exposure of humans. Therefore, a procedure for the quantitative determination of the urinary metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid and 8-carboxygeraniol as potential biomarkers of geraniol exposure was developed and validated. The method is based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) after enzymatic hydrolysis and liquid-liquid extraction (LLE) of the target analytes. The limit of quantification (LOQ) is 1.5 μg L-1 for 8-carboxygeraniol, 2.7 μg L-1 each for Hildebrandt acid and geranic acid, and 1.8 μg L-1 for 3-hydroxycitronellic acid. The method was applied to urine samples of 41 persons without occupational exposure to geraniol. Hildebrandt acid and geranic acid were detected in all samples, 8-carboxygeraniol in 83% and 3-hydroxycitronellic acid in 81% of the samples. Hildebrandt acid (median: 313 μg L-1, range: 37-1966 μg L-1) was the most abundant metabolite, followed by geranic acid (93 μg L-1; 9-477 μg L-1), 3-hydroxycitronellic acid (18 μg L-1; <LOQ to 70 μg L-1) and 8-carboxygeraniol (9 μg L-1; <LOQ to 46 μg L-1). Hildebrandt acid, geranic acid and 3-hydroxycitronellic acid apparently represent larger relative fractions of the eliminated metabolites, but they are not strictly specific for geraniol since they are metabolites of other terpenes as well, such as citral. In contrast, geraniol seems to be the only parent compound for 8-carboxygeraniol, which makes this metabolite a promising candidate for specific human biomonitoring and risk assessment.
Collapse
Affiliation(s)
- Thomas Jäger
- BASF SE, Corporate Health Management, Ludwigshafen, Germany.
| | | | | | | | | |
Collapse
|
11
|
Heghes SC, Filip L, Vostinaru O, Mogosan C, Miere D, Iuga CA, Moldovan M. Essential Oil-Bearing Plants From Balkan Peninsula: Promising Sources for New Drug Candidates for the Prevention and Treatment of Diabetes Mellitus and Dyslipidemia. Front Pharmacol 2020; 11:989. [PMID: 32695007 PMCID: PMC7339870 DOI: 10.3389/fphar.2020.00989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases like diabetes mellitus or dyslipidemia have a complex etiology characterized by the interference of genetic predisposition and environmental factors like diet or lifestyle. Over time they can cause significant vascular complications, leading to dysfunction or failure of key organs (brain, heart), with possible fatal consequences or a severe reduction of life quality. Although current authorized drugs may successfully control blood glucose or cholesterol level, their use is often associated with severe side effects, therefore the development of new drug candidates is necessary for a better management of metabolic diseases. Among potential new drug sources, aromatic plants rich in essential oils like Melissa officinalis L., Mentha x piperita L., Cuminum cyminum L. or Pistacia lentiscus L. var. chia are very promising due to their diverse chemical composition and multiple mechanisms of action. This review describes a series of recent experimental studies investigating antidiabetic and hypolipemic effects of essential oils extracted from several aromatic plant species with an ethnopharmacological relevance in the Balkan peninsula. The pharmacological models used in the studies together with the putative mechanisms of action of the main constituents are also detailed. The presented data clearly sustain a potential administration of the studied essential oils for the prevention and treatment of metabolic diseases. Further research is needed in order to ascertain the therapeutic importance of these findings.
Collapse
Affiliation(s)
- Simona Codruta Heghes
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mirela Moldovan
- Department of Dermopharmacy and Cosmetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Christoforides E, Fourtaka K, Andreou A, Bethanis K. X-ray crystallography and molecular dynamics studies of the inclusion complexes of geraniol in β-cyclodextrin, heptakis (2,6-di-O-methyl)-β-cyclodextrin and heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Contact Allergy to Fragrances. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_86-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Hagvall L, Bruze M, Engfeldt M, Isaksson M, Lindberg M, Ryberg K, Stenberg B, Svedman C, Karlberg A, Bråred Christensson J. Contact allergy to citral and its constituents geranial and neral, coupled with reactions to the prehapten and prohapten geraniol. Contact Dermatitis 2019; 82:31-38. [DOI: 10.1111/cod.13404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Hagvall
- Department of Dermatology and VenereologyInstitute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Department of Dermatology and VenereologyRegion Västra Götaland, Sahlgrenska University Hospital Gothenburg Sweden
| | - Magnus Bruze
- Department of Occupational and Environmental DermatologyLund University, Skåne University Hospital Malmö Sweden
| | - Malin Engfeldt
- Department of Occupational and Environmental DermatologyLund University, Skåne University Hospital Malmö Sweden
| | - Marléne Isaksson
- Department of Occupational and Environmental DermatologyLund University, Skåne University Hospital Malmö Sweden
| | - Magnus Lindberg
- Department of DermatologyUniversity Hospital Örebro Sweden
- Department of Health and Medical SciencesÖrebro University Örebro Sweden
| | - Kristina Ryberg
- Department of DermatologyUddevalla Hospital Uddevalla Sweden
| | - Berndt Stenberg
- Department of Public Health and Clinical Medicine, Dermatology & VenerologyUmeå University Umeå Sweden
| | - Cecilia Svedman
- Department of Occupational and Environmental DermatologyLund University, Skåne University Hospital Malmö Sweden
| | - Ann‐Therese Karlberg
- Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular BiologyUniversity of Gothenburg Gothenburg Sweden
| | - Johanna Bråred Christensson
- Department of Dermatology and VenereologyInstitute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular BiologyUniversity of Gothenburg Gothenburg Sweden
| |
Collapse
|
15
|
Nepal MR, Kang MJ, Kim GH, Cha DH, Nam DH, Jeong TC. Identification of pre- and pro-haptens with a β-galactosidase-expressing E. coli culture system for skin sensitization. Toxicol Lett 2019; 305:81-93. [DOI: 10.1016/j.toxlet.2019.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/31/2018] [Accepted: 01/30/2019] [Indexed: 01/19/2023]
|
16
|
Zehetner P, Höferl M, Buchbauer G. Essential oil components and cytochrome P450 enzymes: a review. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Petra Zehetner
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Martina Höferl
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| |
Collapse
|
17
|
Avonto C, Wang YH, Chittiboyina AG, Vukmanovic S, Khan IA. In chemico assessment of potential sensitizers: Stability and direct peptide reactivity of 24 fragrance ingredients. J Appl Toxicol 2018; 39:398-408. [DOI: 10.1002/jat.3732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cristina Avonto
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| | - Stanislav Vukmanovic
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition; Food and Drug Administration; College Park MD 20740 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy; The University of Mississippi; University, MS 38677 USA
| |
Collapse
|
18
|
Usami A, Ishikawa M, Hori K. Heterologous expression of geraniol dehydrogenase for identifying the metabolic pathways involved in the biotransformation of citral by Acinetobacter sp. Tol 5. Biosci Biotechnol Biochem 2018; 82:2012-2020. [PMID: 30096260 DOI: 10.1080/09168451.2018.1501263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The biotransformation of citral, an industrially important monoterpenoid, has been extensively studied using many microbial biocatalysts. However, the metabolic pathways involved in its biotransformation are still unclear, because citral is a mixture of the trans-isomer geranial and the cis-isomer neral. Here, we applied the heterologous expression of geoA, a gene encoding geraniol dehydrogenase that specifically converts geraniol to geranial and nerol to neral, to identify the metabolic pathways involved in the biotransformation of citral. Acinetobacter sp. Tol 5 was employed in order to demonstrate the utility of this methodology. Tol 5 transformed citral to (1R,3R,4R)-1-methyl-4-(1-methylethenyl)-1,3-cyclohexanediol and geranic acid. Biotransformation of citral precursors (geraniol and nerol) by Tol 5 transformant cells expressing geoA revealed that these compounds were transformed specifically from geranial. Our methodology is expected to facilitate a better understanding of the metabolic pathways involved in the biotransformation of substrates that are unstable and include geometric isomers.
Collapse
Affiliation(s)
- Atsushi Usami
- a Dept. Biomolecular Engineering, Grad. Sch. Engineering , Nagoya University , Nagoya , Japan
| | - Masahito Ishikawa
- a Dept. Biomolecular Engineering, Grad. Sch. Engineering , Nagoya University , Nagoya , Japan
| | - Katsutoshi Hori
- a Dept. Biomolecular Engineering, Grad. Sch. Engineering , Nagoya University , Nagoya , Japan
| |
Collapse
|
19
|
Hagvall L, Bruze M, Engfeldt M, Isaksson M, Lindberg M, Ryberg K, Stenberg B, Svedman C, Karlberg AT, Bråred Christensson J. Contact allergy to oxidized geraniol among Swedish dermatitis patients-A multicentre study by the Swedish Contact Dermatitis Research Group. Contact Dermatitis 2018; 79:232-238. [DOI: 10.1111/cod.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Hagvall
- Department of Dermatology; Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology; Lund University, Skane University Hospital; Malmö Sweden
| | - Malin Engfeldt
- Department of Occupational and Environmental Dermatology; Lund University, Skane University Hospital; Malmö Sweden
| | - Marléne Isaksson
- Department of Occupational and Environmental Dermatology; Lund University, Skane University Hospital; Malmö Sweden
| | - Magnus Lindberg
- Department of Dermatology; University Hospital; Örebro Sweden
- Department of Medical Sciences, School of Medicine; Örebro University; Örebro Sweden
| | - Kristina Ryberg
- Department of Dermatology; Uddevalla Hospital; Uddevalla Sweden
| | - Berndt Stenberg
- Department of Public Health and Clinical Medicine, Dermatology & Venereology; Umeå University; Umeå Sweden
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology; Lund University, Skane University Hospital; Malmö Sweden
| | - Ann-Therese Karlberg
- Dermatochemistry, Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg Sweden
| | - Johanna Bråred Christensson
- Department of Dermatology; Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
- Dermatochemistry, Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
20
|
Lee S, Greenstein T, Shi L, Maguire T, Schloss R, Yarmush M. Tri-culture system for pro-hapten sensitizer identification and potency classification. TECHNOLOGY 2018; 6:67-74. [PMID: 30519598 PMCID: PMC6276108 DOI: 10.1142/s233954781850005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1β, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Talia Greenstein
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
- Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital and the Shriners Burns Hospital, Boston, MA 02114, USA
| |
Collapse
|
21
|
Hagvall L, Niklasson IB, Luthman K, Karlberg AT. Can the epoxides of cinnamyl alcohol and cinnamal show new cases of contact allergy? Contact Dermatitis 2018; 78:399-405. [PMID: 29603274 DOI: 10.1111/cod.12992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cinnamyl alcohol is considered to be a prohapten and prehapten with cinnamal as the main metabolite. However, many individuals who are allergic to cinnamyl alcohol do not react to cinnamal. Sensitizing epoxides of cinnamyl alcohol and cinnamal have been identified as metabolites and autoxidation products of cinnamyl alcohol. OBJECTIVE To investigate the clinical relevance of contact allergy to epoxycinnamyl alcohol and epoxycinnamal. METHODS Irritative effects of the epoxides were investigated in 12 dermatitis patients. Epoxycinnamyl alcohol and epoxycinnamal were patch tested in 393 and 390 consecutive patients, respectively. In parallel, cinnamyl alcohol and cinnamal were patch tested in 607 and 616 patients, respectively. RESULTS Both epoxides were irritants, but no more positive reactions were detected than when testing was performed with cinnamyl alcohol and cinnamal. Late allergic reactions to epoxycinnamyl alcohol were observed. In general, patients with late reactions showed doubtful or positive reactions to cinnamal and fragrance mix I at regular patch testing. CONCLUSION The investigated epoxides are not important haptens in contact allergy to cinnamon fragrance. The high frequency of fragrance allergy among patients included in the irritancy study showed the difficulty of suspecting fragrance allergy on the basis of history; patch testing broadly with fragrance compounds is therefore important.
Collapse
Affiliation(s)
- Lina Hagvall
- Department of Occupational Dermatology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ida B Niklasson
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
23
|
Abstract
Contact sensitization is the initial process involved in the development of an allergic reaction to xenobiotic environmental substances. Here, we briefly describe the differences between irritant and allergic contact dermatitis. Then, we highlight the essential steps involved in the development of an ACD reaction, i.e., the protein binding of haptens, genetic factors influencing the penetration of sensitizers into the skin, the different mechanisms driving the initial development of an inflammatory cytokine micromilieu enabling the full maturation of dendritic cells, the role of pre- and pro-haptens, antigen presentation and T cell activation via MHC and CD1 molecules, dendritic cell (DC) migration, and potential LC contribution as well as the different T cell subsets involved in ACD. In addition, we discuss the latest publications regarding factors that might influence the sensitizing potential such as repeated sensitizer application, penetration enhancers, humidity of the skin, microbiota, Tregs, and phthalates. Last but not least, we briefly touch upon novel targets for drug development that might serve as treatment options for ACD.
Collapse
Affiliation(s)
- Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 7, 79104, Freiburg im Breisgau, Germany.
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 7, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
24
|
Uter W. Contact allergy to fragrances: current clinical and regulatory trends. Allergol Select 2017; 1:190-199. [PMID: 30402616 PMCID: PMC6040011 DOI: 10.5414/alx01604e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/16/2013] [Indexed: 11/18/2022] Open
Abstract
. Several fragrances are important contact allergens. Compared to the immense multitude of more than 2,500 fragrances used in cosmetics, the spectrum of single substances and natural extracts used for patch testing appears limited, albeit comprising the supposedly most important contact allergens. The present review summarizes the most important results of the opinion of the Scientific Committee on Consumer Safety on fragrance allergens in cosmetic products from July 2012. Clinical results beyond abovementioned screening allergens, animal results in terms of the LLNA and structure activity considerations point to 100 single substances and extracts, respectively, which, in addition to those 26 already identified, must be considered contact allergens, and the presence of which should be declared in cosmetics. In case of the most commonly used fragrance terpenes limonene and linalool hydroperoxides resulting from autoxidation constitute the major allergens. These have become available as patch test material recently. Altogether 12 single substances have caused a (very) high number of published cases of sensitization. Thus their use concentration should be (further) reduced or, in case of hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC, e.g., Lyral®), use should be abandoned altogether. This is also recommended in case of oak moss and tree moss due to their content of the strong sensitizers atranol and chloroatranol. As generic maximum dose for the remaining 11 single substances 0.8 µg/cm2 are suggested, which corresponds, under conservative assumptions, a maximum concentration of 100 ppm in the finished product.
Collapse
Affiliation(s)
- W Uter
- Institut für Medizininformatik, Biometrie und Epidemiologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Roberts DW, Aptula A, Api AM. Structure–Potency Relationships for Epoxides in Allergic Contact Dermatitis. Chem Res Toxicol 2017; 30:524-531. [DOI: 10.1021/acs.chemrestox.6b00241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David W. Roberts
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Aynur Aptula
- Unilever
Safety
and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff
Lake, New Jersey 07677, United States
| |
Collapse
|
26
|
Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP, Aschberger K. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization? Regul Toxicol Pharmacol 2016; 82:147-155. [DOI: 10.1016/j.yrtph.2016.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
|
27
|
Fragrance Allergens, Overview with a Focus on Recent Developments and Understanding of Abiotic and Biotic Activation. COSMETICS 2016. [DOI: 10.3390/cosmetics3020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Bråred Christensson J, Karlberg AT, Andersen KE, Bruze M, Johansen JD, Garcia-Bravo B, Giménez Arnau A, Goh CL, Nixon R, White IR. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes. Contact Dermatitis 2016; 74:273-80. [PMID: 26918793 DOI: 10.1111/cod.12545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. OBJECTIVE To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. METHODS Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. RESULTS A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. CONCLUSIONS The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials.
Collapse
Affiliation(s)
- Johanna Bråred Christensson
- Department of Dermatology, Sahlgrenska Academy at University of Gothenburg, 413 45, Gothenburg, Sweden.,Dermatochemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Dermatochemistry, Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Klaus E Andersen
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Jeanne D Johansen
- The National Allergy Research Centre, Department of Dermato-allergology, Gentofte Hospital, University of Copenhagen, 2900, Hellerup, Denmark
| | - Begoña Garcia-Bravo
- Department of Dermatology, University Hospital Virgen Macarena, 41007, Seville, Spain
| | - Ana Giménez Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Médiques, Universitat Autònoma, 08003, Barcelona, Spain
| | | | - Rosemary Nixon
- Occupational Dermatology Research and Education Centre, Skin and Cancer Foundation, 3053, Victoria, Australia
| | - Ian R White
- Department of Cutaneous Allergy, St John's Institute of Dermatology, St Thomas' Hospital, SE1 7EH, London, UK
| |
Collapse
|
29
|
Geier J, Uter W, Lessmann H, Schnuch A. Fragrance mix I and II: results of breakdown tests. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Johannes Geier
- Information Network of Departments of Dermatology; Georg-August University; 37075 Göttingen Germany
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University of Erlangen/Nürnberg; 91054 Erlangen Germany
| | - Holger Lessmann
- Information Network of Departments of Dermatology; Georg-August University; 37075 Göttingen Germany
| | - Axel Schnuch
- Information Network of Departments of Dermatology; Georg-August University; 37075 Göttingen Germany
| |
Collapse
|
30
|
Ramzy AG, Hagvall L, Pei MN, Samuelsson K, Nilsson U. Investigation of diethylthiourea and ethyl isothiocyanate as potent skin allergens in chloroprene rubber. Contact Dermatitis 2014; 72:139-46. [PMID: 25532938 DOI: 10.1111/cod.12318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Exposure to chloroprene rubber has resulted in numerous cases of allergic contact dermatitis, attributed to organic thiourea compounds used as vulcanization accelerators. However, thiourea compounds are not considered to be strong haptens. OBJECTIVES To analyse common commercial chloroprene materials for their contents of diethylthiourea (DETU), dibutylthiourea (DBTU), diphenylthiourea (DPTU), and their degradation products, isothiocyanates; and to investigate the sensitization potencies of possible degradation products of the mentioned thiourea compounds. METHODS Liquid chromatography/mass spectrometry (MS) was used for quantification of organic thiourea compounds in chloroprene products, such as medical, sports and diving gear; isothiocyanates were measured by solid-phase microextraction/gas chromatography/MS. Sensitization potencies were determined with the murine local lymph node assay (LLNA). RESULTS DETU was identified at concentrations of 2.7-9.4 µg/cm(2) in all samples, whereas neither DBTU nor DPTU was detected. At 37°C, degradation of DETU in the materials to ethyl isothiocyanate (EITC) was detected. EITC and ethyl isocyanate showed extreme and strong sensitization potencies, respectively, in the LLNA. CONCLUSIONS DETU can act as a prehapten, being degraded to EITC when subjected to body temperature upon skin contact. EITC could thus be the culprit behind allergic contact dermatitis caused by chloroprene rubber.
Collapse
Affiliation(s)
- Ahmad G Ramzy
- Department of Analytical Chemistry, Stockholm University, Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Lee S, Dong DX, Jindal R, Maguire T, Mitra B, Schloss R, Yarmush M. Predicting full thickness skin sensitization using a support vector machine. Toxicol In Vitro 2014; 28:1413-23. [PMID: 25025180 PMCID: PMC4470375 DOI: 10.1016/j.tiv.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022]
Abstract
To assess the public's propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan's cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - David Xu Dong
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States; Center for Engineering in Medicine and the Department of Surgery, Massachusettes General Hospital and the Shriners Burns Hospital, Boston, MA 02114, United States.
| |
Collapse
|
32
|
Andersch Björkman Y, Hagvall L, Siwmark C, Niklasson B, Karlberg AT, Bråred Christensson J. Air-oxidized linalool elicits eczema in allergic patients - a repeated open application test study. Contact Dermatitis 2014; 70:129-38. [PMID: 24588367 DOI: 10.1111/cod.12163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Linalool is a commonly used fragrance terpene that forms potent sensitizers upon oxidation. In a recent multicentre study, we found that 7% of 2900 patients showed positive patch test reactions to oxidized linalool at 6.0%. No elicitation studies have been performed. OBJECTIVE To identify threshold concentrations for elicitation of allergic contact dermatitis caused by oxidized linalool in allergic individuals with repeated exposures. METHODS Repeated open application tests were performed in 6 participants previously diagnosed with contact allergy to oxidized linalool. Creams containing 3.0%, 1.0% and 0.30% oxidized linalool (corresponding to 0.56%, 0.19% and 0.056% linalool hydroperoxides, respectively) and 'fine fragrance' containing 1.0%, 0.30% and 0.10% oxidized linalool (corresponding to 0.19%, 0.056% and 0.019% linalool hydroperoxides, respectively) were used twice daily for up to 3 weeks. Patch testing with a dilution series of oxidized linalool was performed. RESULTS Five of 6 participants reacted to the cream containing 3% oxidized linalool. With 1% oxidized linalool, a reaction was seen in 3 (cream) and 4 (fine fragrance) participants, respectively. With 0.3% oxidized linalool, 2 (cream) and 1 (fine fragrance) participants reacted. CONCLUSION Repeated exposure to low concentrations of oxidized linalool can elicit allergic contact dermatitis in previously sensitized individuals.
Collapse
Affiliation(s)
- Ylva Andersch Björkman
- Department of Dermatology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Delaine T, Ponting DJ, Niklasson IB, Emter R, Hagvall L, Norrby PO, Natsch A, Luthman K, Karlberg AT. Epoxyalcohols: bioactivation and conjugation required for skin sensitization. Chem Res Toxicol 2014; 27:1860-70. [PMID: 25195701 DOI: 10.1021/tx500297d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allylic alcohols, such as geraniol 1, are easily oxidized by varying mechanisms, including the formation of both 2,3-epoxides and/or aldehydes. These epoxides, aldehydes, and epoxy-aldehydes can be interconverted to each other, and the reactivity of them all must be considered when considering the sensitization potential of the parent allylic alcohol. An in-depth study of the possible metabolites and autoxidation products of allylic alcohols is described, covering the formation, interconversion, reactivity, and sensitizing potential thereof, using a combination of in vivo, in vitro, in chemico, and in silico methods. This multimodal study, using the integration of diverse techniques to investigate the sensitization potential of a molecule, allows the identification of potential candidate(s) for the true culprit(s) in allergic responses to allylic alcohols. Overall, the sensitization potential of the investigated epoxyalcohols and unsaturated alcohols was found to derive from metabolic oxidation to the more potent aldehyde where possible. Where this is less likely, the compound remains weakly or nonsensitizing. Metabolic activation of a double bond to form a nonconjugated, nonterminal epoxide moiety is not enough to turn a nonsensitizing alcohol into a sensitizer, as such epoxides have low reactivity and low sensitizing potency. In addition, even an allylic 2,3-epoxide moiety is not necessarily a potent sensitizer, as shown for 2, where formation of the epoxide weakens the sensitization potential.
Collapse
Affiliation(s)
- Tamara Delaine
- Department of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hagvall L, Bråred Christensson J. Cross-reactivity between citral and geraniol - can it be attributed to oxidized geraniol? Contact Dermatitis 2014; 71:280-8. [DOI: 10.1111/cod.12293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Lina Hagvall
- Department of Dermatology; Sahlgrenska Academy, University of Gothenburg; Gröna Stråket 16 413 45 Gothenburg Sweden
| | - Johanna Bråred Christensson
- Department of Dermatology; Sahlgrenska Academy, University of Gothenburg; Gröna Stråket 16 413 45 Gothenburg Sweden
- Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology; University of Gothenburg; Kemigården 4 412 96 Gothenburg Sweden
| |
Collapse
|
35
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
36
|
Rudbäck J, Hagvall L, Börje A, Nilsson U, Karlberg AT. Characterization of skin sensitizers from autoxidized citronellol - impact of the terpene structure on the autoxidation process. Contact Dermatitis 2014; 70:329-39. [DOI: 10.1111/cod.12234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/04/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Johanna Rudbäck
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| | - Lina Hagvall
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
- Department of Dermatology; Sahlgrenska Academy, University of Gothenburg; 405 30 Gothenburg Sweden
| | - Anna Börje
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| | - Ulrika Nilsson
- Department of Analytical Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy, University of Gothenburg; 412 96 Gothenburg Sweden
| |
Collapse
|
37
|
Rudbäck J, Ramzy A, Karlberg AT, Nilsson U. Determination of allergenic hydroperoxides in essential oils using gas chromatography with electron ionization mass spectrometry. J Sep Sci 2014; 37:982-9. [DOI: 10.1002/jssc.201300843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Rudbäck
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy; University of Gothenburg; Gothenburg Sweden
| | - Ahmed Ramzy
- Department of Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology; Dermatochemistry and Skin Allergy; University of Gothenburg; Gothenburg Sweden
| | - Ulrika Nilsson
- Department of Analytical Chemistry; Stockholm University; Stockholm Sweden
| |
Collapse
|
38
|
Niklasson IB, Ponting DJ, Luthman K, Karlberg AT. Bioactivation of Cinnamic Alcohol Forms Several Strong Skin Sensitizers. Chem Res Toxicol 2014; 27:568-75. [DOI: 10.1021/tx400428f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ida B. Niklasson
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - David J. Ponting
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Kristina Luthman
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department
of Chemistry and Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
39
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Maxwell G, MacKay C, Cubberley R, Davies M, Gellatly N, Glavin S, Gouin T, Jacquoilleot S, Moore C, Pendlington R, Saib O, Sheffield D, Stark R, Summerfield V. Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro 2013; 28:8-12. [PMID: 24184331 DOI: 10.1016/j.tiv.2013.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/14/2022]
Abstract
As documented in the recent OECD report 'the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins' (OECD, 2012), the chemical and biological events driving the induction of human skin sensitisation have been investigated for many years and are now well understood. Several non-animal test methods have been developed to predict sensitiser potential by measuring the impact of chemical sensitisers on these key events (Adler et al., 2011; Maxwell et al., 2011); however our ability to use these non-animal datasets for risk assessment decision-making (i.e. to establish a safe level of human exposure for a sensitising chemical) remains limited and a more mechanistic approach to data integration is required to address this challenge. Informed by our previous efforts to model the induction of skin sensitisation (Maxwell and MacKay, 2008) we are now developing two mathematical models ('total haptenated protein' model and 'CD8(+) T cell response' model) that will be linked to provide predictions of the human CD8(+) T cell response for a defined skin exposure to a sensitising chemical. Mathematical model development is underpinned by focussed clinical or human-relevant research activities designed to inform/challenge model predictions whilst also increasing our fundamental understanding of human skin sensitisation. With this approach, we aim to quantify the relationship between the dose of sensitiser applied to the skin and the extent of the hapten-specific T cell response that would result. Furthermore, by benchmarking our mathematical model predictions against clinical datasets (e.g. human diagnostic patch test data), instead of animal test data, we propose that this approach could represent a new paradigm for mechanistic toxicology.
Collapse
Affiliation(s)
- Gavin Maxwell
- Safety & Environmental Assurance Centre (SEAC) Colworth, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Karlberg AT, Börje A, Duus Johansen J, Lidén C, Rastogi S, Roberts D, Uter W, White IR. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens. Contact Dermatitis 2013; 69:323-34. [DOI: 10.1111/cod.12127] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 06/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ann-Therese Karlberg
- Division of Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology; University of Gothenburg; SE-412 96 Gothenburg Sweden
| | - Anna Börje
- Division of Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology; University of Gothenburg; SE-412 96 Gothenburg Sweden
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermato-Allergology; Gentofte Hospital, University of Copenhagen; DK-2900 Hellerup Denmark
| | - Carola Lidén
- Institute of Environmental Medicine; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | | | - David Roberts
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University Erlangen/Nürnberg; 91054 Erlangen Germany
| | - Ian R. White
- Department of Cutaneous Allergy; St John's Institute of Dermatology, St Thomas' Hospital; London SE1 7EH UK
| |
Collapse
|
42
|
Uter W, Yazar K, Kratz EM, Mildau G, Lidén C. Coupled exposure to ingredients of cosmetic products: I. Fragrances. Contact Dermatitis 2013; 69:335-41. [DOI: 10.1111/cod.12125] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; Friedrich-Alexander-University Erlangen/Nürnberg; D-91054 Erlangen Germany
| | - Kerem Yazar
- Institute of Environmental Medicine; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Eva-Maria Kratz
- Chemical and Veterinary Investigation Office (CVUA Karlsruhe); D-76187 Karlsruhe Germany
| | - Gerd Mildau
- Chemical and Veterinary Investigation Office (CVUA Karlsruhe); D-76187 Karlsruhe Germany
| | - Carola Lidén
- Institute of Environmental Medicine; Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
43
|
Natsch A, Haupt T. Utility of rat liver S9 fractions to study skin-sensitizing prohaptens in a modified KeratinoSens assay. Toxicol Sci 2013; 135:356-68. [PMID: 23872582 DOI: 10.1093/toxsci/kft160] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prohaptens are chemicals, which may cause skin sensitization after being converted into electrophilic molecules by skin enzymes. Aroclor-induced rat liver S9 fractions represent the metabolic activation system most commonly used in in vitro toxicology. This system contains much higher enzyme activities compared with those reported in skin, but it may still serve as a surrogate system to study the potential of chemicals to act as prohaptens. To test this concept, the luciferase induction in KeratinoSens reporter cells treated with chemicals in presence and absence of S9 fractions was measured. Suspected prohaptens such as methyl isoeugenol, eugenol, or trans-anethole gave no, or only weak, ge ne induction in absence of S9 fractions, and a significantly enhanced luciferase induction in presence of S9, proving their prohapten status. Direct-acting haptens like 2,4-dinitrochlorobenzene or cinnamic aldehyde gave a reduced response in presence of S9. We evaluated whether this metabolic activation assay might be implemented in a tiered screening strategy to counter-screen negatives in the KeratinoSens assay to enhance sensitivity. To this aim, all chemicals classified negative were retested with this activation step. Among the 77 chemicals found as correct-negatives, 73 were also negative in presence of metabolic activation, thus this counterscreen would reduce specificity only slightly. However, this comprehensive screening showed that only a small fraction of the known skin sensitizers need activation by the S9 system. Therefore, the KeratinoSens-S9 assay appears useful for the in vitro evaluation of specific classes of potential prohaptens and to mechanistically rationalize their prohapten status.
Collapse
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | | |
Collapse
|
44
|
Delaine T, Hagvall L, Rudbäck J, Luthman K, Karlberg AT. Skin Sensitization of Epoxyaldehydes: Importance of Conjugation. Chem Res Toxicol 2013; 26:674-84. [DOI: 10.1021/tx300465h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tamara Delaine
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Lina Hagvall
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Department of Dermatology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna Rudbäck
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Kristina Luthman
- Department of Chemistry and Molecular
Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
45
|
Hewitt NJ, Edwards RJ, Fritsche E, Goebel C, Aeby P, Scheel J, Reisinger K, Ouédraogo G, Duche D, Eilstein J, Latil A, Kenny J, Moore C, Kuehnl J, Barroso J, Fautz R, Pfuhler S. Use of Human In Vitro Skin Models for Accurate and Ethical Risk Assessment: Metabolic Considerations. Toxicol Sci 2013; 133:209-17. [DOI: 10.1093/toxsci/kft080] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Hagvall L, Karlberg AT, Christensson JB. Finding the optimal patch test material and test concentration to detect contact allergy to geraniol. Contact Dermatitis 2013; 68:224-31. [DOI: 10.1111/cod.12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Niklasson IB, Delaine T, Islam MN, Karlsson R, Luthman K, Karlberg AT. Cinnamyl alcohol oxidizes rapidly upon air exposure. Contact Dermatitis 2013; 68:129-38. [DOI: 10.1111/cod.12009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Hagvall L, Karlberg AT, Christensson JB. Contact allergy to air-exposed geraniol: clinical observations and report of 14 cases. Contact Dermatitis 2012; 67:20-7. [PMID: 22681463 DOI: 10.1111/j.1600-0536.2012.02079.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The fragrance terpene geraniol forms sensitizing compounds via autoxidation and skin metabolism. Geranial and neral, the two isomers of citral, are the major haptens formed in both of these activation pathways. OBJECTIVES To investigate whether testing with oxidized geraniol detects more cases of contact allergy than testing with pure geraniol. PATIENTS AND METHODS The pattern of reactions to pure and oxidized geraniol, and metabolites/autoxidation products, was studied to investigate the importance of autoxidation or cutaneous metabolism in contact allergy to geraniol. Pure and oxidized geraniol were tested at 2.0% petrolatum in 2227 and 2179 consecutive patients, respectively. In parallel, geranial, neral and citral were tested in 2152, 1626 and 1055 consecutive patients, respectively. RESULTS Pure and oxidized geraniol gave positive patch test reactions in 0.13% and 0.55% of the patients, respectively. Eight of 11 patients with positive patch test reactions to oxidized geraniol also reacted to citral or its components. Relevance for the positive patch test reactions in relation to the patients' dermatitis was found in 11 of 14 cases. CONCLUSIONS Testing with oxidized geraniol could detect more cases of contact allergy to geraniol. The reaction pattern of the 14 cases presented indicates that both autoxidation and metabolism could be important in sensitization to geraniol.
Collapse
Affiliation(s)
- Lina Hagvall
- Department of Dermatology, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden.
| | | | | |
Collapse
|
49
|
Usta J, Hachem Y, El-Rifai O, Bou-Moughlabey Y, Echtay K, Griffiths D, Nakkash-Chmaisse H, Makki RF. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants. Toxicol In Vitro 2012; 27:339-48. [PMID: 22940465 DOI: 10.1016/j.tiv.2012.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022]
Abstract
We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death.
Collapse
Affiliation(s)
- Julnar Usta
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|