1
|
Pereira PJS, Pugsley MK, Troncy E, Tan W, Pouliot M, Harper C, Prefontaine A, Easter A, Wallis R, Miraucourt L, Huang H, Accardi MV, Boulay E, Maghezzi MS, Authier S. Incidence of spontaneous arrhythmias in freely moving healthy untreated Sprague-Dawley rats. J Pharmacol Toxicol Methods 2019; 99:106589. [PMID: 31154034 DOI: 10.1016/j.vascn.2019.106589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
Spontaneous arrhythmia characterization in healthy rats can support interpretation when studying novel therapies. Male (n = 55) and female (n = 40) Sprague-Dawley rats with telemetry transmitters for a derivation II ECG. Arrhythmias were assessed from continuous ECG monitoring over a period of 24-48 h, and data analyzed using an automated detection algorithm with 100% manual over-read. While a total of 1825 spontaneous ventricular premature beats (VPB) were identified, only 7 rats (or 7.4%) did not present with any over the recording period. Spontaneous episode(s) of ventricular tachycardia (VT) were noted in males (27%) and females (3%). The incidence of VPB was significantly higher (p < 0.01) during the night time (7 pm-7 am) compared to daytime, while males presented with significantly (p < 0.001) more VPB than females. Most VPB were observed as single ectopic beats, followed by salvos (2 or 3 consecutive VPBs), and VT (i.e. 4 consecutive VPBs). Most VPBs were single premature ventricular contractions (PVCs) (57%), while the remaining were escape complexes (43%). Spontaneous premature junctional complexes (PJC) were also observed and were significantly more frequent during the night, and in males. Lastly, 596 episodes of spontaneous 2nd-degree atrioventricular (AV) block were identified and were significantly more frequent during the day time in males. Most 2nd-degree AV block episodes were Mobitz type I (57%), with a significantly (p < 0.05) higher incidence in males. This work emphasizes the importance of obtaining sufficient baseline data when undertaking arrhythmia analysis in safety study and provides a better understanding of both sex- and time- dependent effects of spontaneous arrhythmias in rats.
Collapse
Affiliation(s)
| | | | - Eric Troncy
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Wendy Tan
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Alison Easter
- Praxis Precision Medicines, Cambridge, MA, United States of America
| | - Rob Wallis
- Safety Pharmacology Consultant, London, United Kingdom
| | | | | | | | - Emmanuel Boulay
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Simon Authier
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
2
|
Pugsley MK, Authier S, Hayes ES, Hamlin RL, Accardi MV, Curtis MJ. Recalibration of nonclinical safety pharmacology assessment to anticipate evolving regulatory expectations. J Pharmacol Toxicol Methods 2016; 81:1-8. [PMID: 27343819 DOI: 10.1016/j.vascn.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Safety pharmacology (SP) has evolved in terms of architecture and content since the inception of the SP Society (SPS). SP was initially focused on the issue of drug-induced QT prolongation, but has now become a broad spectrum discipline with expanding expectations for evaluation of drug adverse effect liability in all organ systems, not merely the narrow consideration of torsades de pointes (TdP) liability testing. An important part of the evolution of SP has been the elaboration of architecture for interrogation of non-clinical models in terms of model development, model validation and model implementation. While SP has been defined by mandatory cardiovascular, central nervous system (CNS) and respiratory system studies ever since the core battery was elaborated, it also involves evaluation of drug effects on other physiological systems. The current state of SP evolution is the incorporation of emerging new technologies in a wide range of non-clinical drug safety testing models. This will refine the SP process, while potentially expanding the core battery. The continued refinement of automated technologies (e.g., automated patch clamp systems) is enhancing the scope for detection of adverse effect liability (i.e., for more than just IKr blockade), while introducing a potential for speed and accuracy in cardiovascular and CNS SP by providing rapid, high throughput ion channel screening methods for implementation in early drug development. A variety of CNS liability assays, which exploit isolated brain tissue, and in vitro electrophysiological techniques, have provided an additional level of complimentary preclinical safety screens aimed at establishing the seizurogenic potential and risk for memory dysfunction of new chemical entities (NCEs). As with previous editorials that preface the annual themed issue on SP methods published in the Journal of Pharmacological and Toxicological Methods (JPTM), we highlight here the content derived from the most recent (2015) SPS meeting held in Prague, Czech Republic. This issue of JPTM continues the tradition of providing a publication summary of articles primarily presented at the SPS meeting with direct bearing on the discipline of SP. Novel method development and refinement in all areas of the discipline are reflected in the content.
Collapse
Affiliation(s)
- Michael K Pugsley
- Department of Toxicology & PKDM, Purdue Pharma LP., 6 Cedar Brook Dr., Cranbury, NJ 08512, U.S.A..
| | - Simon Authier
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | | | | | - Michael V Accardi
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, Rayne Institute, St Thomas' Hospital, London, SE17EH, UK
| |
Collapse
|
3
|
Polak S, Pugsley MK, Stockbridge N, Garnett C, Wiśniowska B. Early Drug Discovery Prediction of Proarrhythmia Potential and Its Covariates. AAPS JOURNAL 2015; 17:1025-32. [PMID: 25940083 PMCID: PMC4476985 DOI: 10.1208/s12248-015-9773-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
|
4
|
Pugsley MK, Curtis MJ, Hayes ES. Biophysics and Molecular Biology of Cardiac Ion Channels for the Safety Pharmacologist. Handb Exp Pharmacol 2015; 229:149-203. [PMID: 26091640 DOI: 10.1007/978-3-662-46943-9_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac safety pharmacology is a continuously evolving discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment of a new chemical entity (NCE). The aim of cardiac safety pharmacology is to characterise the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects on the heart using continuously evolving methodology. Unlike Toxicology, safety pharmacology includes within its remit a regulatory requirement to predict the risk of rare cardiotoxic (potentially lethal) events such as torsades de pointes (TdP), which is statistically associated with drug-induced changes in the QT interval of the ECG due to blockade of I Kr or K v11.1 current encoded by hERG. This gives safety pharmacology its unique character. The key issues for the safety pharmacology assessment of a drug on the heart are detection of an adverse effect liability, projection of the data into safety margin calculation and clinical safety monitoring. This chapter will briefly review the current cardiac safety pharmacology paradigm outlined in the ICH S7A and ICH S7B guidance documents and the non-clinical models and methods used in the evaluation of new chemical entities in order to define the integrated risk assessment for submission to regulatory authorities. An overview of how the present cardiac paradigm was developed will be discussed, explaining how it was based upon marketing authorisation withdrawal of many non-cardiovascular compounds due to unanticipated proarrhythmic effects. The role of related biomarkers (of cardiac repolarisation, e.g. prolongation of the QT interval of the ECG) will be considered. We will also provide an overview of the 'non-hERG-centric' concepts utilised in the evolving comprehensive in vitro proarrhythmia assay (CIPA) that details conduct of the proposed ion channel battery test, use of human stem cells and application of in silico models to early cardiac safety assessment. The summary of our current understanding of the triggers of TdP will include the interplay between action potential (AP) prolongation, early and delayed afterdepolarisation and substrates for re-entry arrhythmias.
Collapse
Affiliation(s)
- Michael K Pugsley
- Global Safety Pharmacology and Toxicology/Pathology, Janssen Pharmaceuticals LLC, 1000 Route 202 South, Raritan, NJ, 08869, USA,
| | | | | |
Collapse
|
5
|
Guillaume P, Goineau S, Froget G. An overview of QT interval assessment in safety pharmacology. ACTA ACUST UNITED AC 2013; Chapter 10:Unit 10.7. [PMID: 23744709 DOI: 10.1002/0471141755.ph1007s61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Medicinal products that prolong cardiac repolarization, as assessed in terms of prolongation of the QT interval of the electrocardiogram, may trigger torsade de pointe, a potentially fatal arrhythmia. The lethality of this risk necessitates a detailed preclinical evaluation before initiating clinical trials. The strategy for assessing the potential of new chemical entities to cause QT interval prolongation involves two complementary approaches. An in vivo test provides information on the potential of the agent to prolong the QT interval under near-physiological conditions. The results are mostly descriptive, providing little insight into the mechanisms of action. In vitro experiments provide more mechanistic data, although the test procedure is far removed from the clinical situation. While both approaches have reasonable predictive value, the results may depend largely on the experimental conditions employed. Discussed in this unit are experimental issues that should be considered when testing agents for their potential to cause arrhythmias, as well as general strategies for understanding the problems associated with this cardiovascular risk.
Collapse
|
6
|
Chain ASY, Sturkenboom MCJM, Danhof M, Della Pasqua OE. Establishing in vitro to clinical correlations in the evaluation of cardiovascular safety pharmacology. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e373-e383. [PMID: 24050134 DOI: 10.1016/j.ddtec.2012.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preclinical studies are vital in establishing the efficacy and safety of a new chemical entity (NCE) in humans. To deliver meaningful information, experiments have to be well defined and provide outcome that is relevant and translatable to humans. This review briefly surveys the various preclinical experiments that are frequently conducted to assess drug effects on cardiac conductivity in early drug development. We examine the different approaches used to establish correlations between non-clinical and clinical settings and discuss their value in the evaluation of cardiovascular risk.
Collapse
|
7
|
Authier S, Vargas HM, Curtis MJ, Holbrook M, Pugsley MK. Safety pharmacology investigations in toxicology studies: An industry survey. J Pharmacol Toxicol Methods 2013; 68:44-51. [DOI: 10.1016/j.vascn.2013.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
8
|
Möller C. Keeping the rhythm: hERG and beyond in cardiovascular safety pharmacology. Expert Rev Clin Pharmacol 2012; 3:321-9. [PMID: 22111613 DOI: 10.1586/ecp.10.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following its involvement in life-threatening cardiac arrhythmias, the catchword 'hERG' has become infamous in the drug discovery community. The blockade of the ion channel coded by the human ether-á-go-go-related gene (hERG) has been correlated to a prolongation of the QT interval in the ECG, which again is correlated to a potential risk of a life-threatening polymorphic ventricular tachycardia - torsades de pointes (TdP). Therefore, in vitro investigations for blockade of this ion channel have become a standard, starting early in most drug discovery projects and often accompanying the whole project; at some stage, scientists in many medicinal chemistry programs have to deal with hERG channel liabilities. Data for the compound effects on hERG channel activity are generally part of the safety pharmacology risk assessment in regulatory submissions and, at this stage, are ideally conducted in compliance with good laboratory practice. With the withdrawal of clobutinol from the market, owing to its perceived risk of introducing TdP, the importance of the hERG channel has very recently been reconfirmed. Despite being of such importance for drug discovery, the relevance and impact of hERG data are sometimes misinterpreted, as there are drugs that block the hERG-coded ion channel but do not cause TdP, and drugs that cause TdP but do not block the hERG channel. This review aims to provide an overview of TdP, including the cardiac action potential and the ion channels involved in it, as well as on the relevance and interpretation of in vitro hERG channel data and their impact for drug discovery projects. Finally, novel cardiac safety test systems beyond in vitro hERG channel screening are discussed.
Collapse
Affiliation(s)
- Clemens Möller
- Evotec AG, Discovery Alliances, Schnackenburgallee 114, Hamburg, Germany.
| |
Collapse
|
9
|
Sison-Young RLC, Kia R, Heslop J, Kelly L, Rowe C, Cross MJ, Kitteringham NR, Hanley N, Park BK, Goldring CEP. Human pluripotent stem cells for modeling toxicity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:207-256. [PMID: 22776643 DOI: 10.1016/b978-0-12-398339-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of xenobiotics, driven by the demand for therapeutic, domestic and industrial uses continues to grow. However, along with this increasing demand is the risk of xenobiotic-induced toxicity. Currently, safety screening of xenobiotics uses a plethora of animal and in vitro model systems which have over the decades proven useful during compound development and for application in mechanistic studies of xenobiotic-induced toxicity. However, these assessments have proven to be animal-intensive and costly. More importantly, the prevalence of xenobiotic-induced toxicity is still significantly high, causing patient morbidity and mortality, and a costly impediment during drug development. This suggests that the current models for drug safety screening are not reliable in toxicity prediction, and the results not easily translatable to the clinic due to insensitive assays that do not recapitulate fully the complex phenotype of a functional cell type in vivo. Recent advances in the field of stem cell research have potentially allowed for a readily available source of metabolically competent cells for toxicity studies, derived using human pluripotent stem cells harnessed from embryos or reprogrammed from mature somatic cells. Pluripotent stem cell-derived cell types also allow for potential disease modeling in vitro for the purposes of drug toxicology and safety pharmacology, making this model possibly more predictive of drug toxicity compared with existing models. This article will review the advances and challenges of using human pluripotent stem cells for modeling metabolism and toxicity, and offer some perspectives as to where its future may lie.
Collapse
Affiliation(s)
- R L C Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012. [DOI: 10.1007/978-3-642-24181-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Curtis MJ. A novel adult human ventricle slice preparation for cardiac drug discovery and safety pharmacology. Cardiovasc Res 2011; 93:10-1. [PMID: 22049535 DOI: 10.1093/cvr/cvr293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Brandenburger M, Wenzel J, Bogdan R, Richardt D, Nguemo F, Reppel M, Hescheler J, Terlau H, Dendorfer A. Organotypic slice culture from human adult ventricular myocardium. Cardiovasc Res 2011; 93:50-9. [PMID: 21972180 DOI: 10.1093/cvr/cvr259] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Cardiovascular research requires complex and functionally intact experimental models. Due to major differences in the cellular and subcellular composition of the myocardium between species, the use of human heart tissue is highly desirable. To enhance the experimental use of the human myocardium, we established methods for the preparation of vital tissue slices from the adult ventricular myocardium as well as conditions for their long-term preservation in organotypic culture. METHODS AND RESULTS Human ventricular heart samples were derived from surgical specimens excised during a therapeutic Morrow myectomy and cut into 300 μm thick slices. Slices were either characterized in acute experiments or cultured at a liquid-air interface. Viability and functionality were proven by viability staining, enzyme activity tests, intracellular potential recordings, and force measurements. Precision-cut slices showed high viability throughout 28 days in culture and displayed typical cardiomyocyte action potential characteristics, which enabled pharmacological safety testing on the rapid component of the delayed rectifier potassium current (I(Kr)) and ATP-dependent potassium channels throughout the whole culture period. Constant expression of major ion channels was confirmed by quantitative PCR. Acute slices developed excitation-dependent contractions with a clear preload dependency and a β-adrenergic response. Contractility and myosin light chain expression decreased during the first days in culture but reached a steady state with reactivity upon β-adrenergic stimulation being preserved. CONCLUSION Organotypic heart slices represent a multicellular model of the human myocardium and a novel platform for studies ranging from the investigation of molecular interactions to tissue engineering.
Collapse
Affiliation(s)
- Matthias Brandenburger
- Department of Experimental and Clinical Pharmacology and Toxicology, Medical University of Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In silico toxicology methods are practical, evidence-based and high throughput, with varying accuracy. In silico approaches are of keen interest, not only to scientists in the private sector and to academic researchers worldwide, but also to the public. They are being increasingly evaluated and applied by regulators. Although there are foreseeable beneficial aspects--including maximising use of prior test data and the potential for minimising animal use for future toxicity testing--the primary use of in silico toxicology methods in the pharmaceutical sciences are as decision support information. It is possible for in silico toxicology methods to complement and strengthen the evidence for certain regulatory review processes, and to enhance risk management by supporting a more informed decision regarding priority setting for additional toxicological testing in research and product development. There are also several challenges with these continually evolving methods which clearly must be considered. This mini-review describes in silico methods that have been researched as Critical Path Initiative toolkits for predicting toxicities early in drug development based on prior knowledge derived from preclinical and clinical data at the US Food and Drug Administration, Center for Drug Evaluation and Research.
Collapse
Affiliation(s)
- Luis G Valerio
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak 51, Room 4128, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002, USA.
| |
Collapse
|
14
|
Shultz MD, Cao X, Chen CH, Cho YS, Davis NR, Eckman J, Fan J, Fekete A, Firestone B, Flynn J, Green J, Growney JD, Holmqvist M, Hsu M, Jansson D, Jiang L, Kwon P, Liu G, Lombardo F, Lu Q, Majumdar D, Meta C, Perez L, Pu M, Ramsey T, Remiszewski S, Skolnik S, Traebert M, Urban L, Uttamsingh V, Wang P, Whitebread S, Whitehead L, Yan-Neale Y, Yao YM, Zhou L, Atadja P. Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors. J Med Chem 2011; 54:4752-72. [PMID: 21650221 DOI: 10.1021/jm200388e] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
Collapse
Affiliation(s)
- Michael D Shultz
- Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vargas HM. A new preclinical biomarker for risk of Torsades de Pointes: drug-induced reduction of the cardiac electromechanical window. Br J Pharmacol 2011; 161:1441-3. [PMID: 20698854 DOI: 10.1111/j.1476-5381.2010.00980.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Evaluation of new therapeutic agents for their potential to cause QT interval prolongation and drug-induced ventricular arrhythmia, like Torsades de Pointes (TdP), is a critical activity during drug development. The QT interval has been used as a surrogate biomarker to assess ventricular repolarization effects caused by drug-induced blockade of cardiac repolarizing currents, mainly IKr, but is imperfect in predicting proarrhythmia. Evidence suggests that left ventricular mechanical dysfunction may also contribute to ventricular arrhythmias; thus, electrical and mechanical alterations may have a role in drug-induced TdP. The electromechanical window (EMw) represents the time difference between the end of electrical systole (i.e. the QT interval) and the completion of ventricular relaxation (i.e. the QLVPend interval), and appears to be a new potential biomarker for TdP risk. A reduction in the EMw (to negative values) has now been shown to be associated with the onset of TdP in an anaesthetized dog model of long QT1 syndrome. Therefore, the EMw represents a novel indicator of TdP risk that may add predictive value beyond assay of drug-induced QT interval prolongation.
Collapse
Affiliation(s)
- Hugo M Vargas
- Department of Investigative Toxicology, Amgen Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
16
|
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50:940-50. [PMID: 21385587 DOI: 10.1016/j.yjmcc.2011.02.018] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/29/2022]
Abstract
In the late 19th century, a number of investigators were working on perfecting isolated heart model, but it was Oscar Langendorff who, in 1895, pioneered the isolated perfused mammalian heart. Since that time, the Langendorff preparation has evolved and provided a wealth of data underpinning our understanding of the fundamental physiology of the heart: its contractile function, coronary blood flow regulation and cardiac metabolism. In more recent times, the procedure has been used to probe pathophysiology of ischaemia/reperfusion and disease states, and with the dawn of molecular biology and genetic manipulation, the Langendorff perfused heart has remained a stalwart tool in the study of the impact upon the physiology of the heart by pharmacological inhibitors and targeted deletion or up-regulation of genes and their impact upon intracellular signalling and adaption to clinically relevant stressful stimuli. We present here the basic structure of the Langendorff system and the fundamental experimental rules which warrant a viable heart preparation. In addition, we discuss the use of the isolated retrograde perfused heart in the model of ischaemia-reperfusion injury ex-vivo, and its applicability to other areas of study. The Langendorff perfusion apparatus is highly adaptable and this is reflected not only in the procedure's longevity but also in the number of different applications to which it has been turned.
Collapse
Affiliation(s)
- Robert M Bell
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
17
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
18
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|