1
|
Zheng YL, Xu Y, Liu YQ, Zhao QW, Li YQ. De Novo Biosynthesis of a Bioactive Meroterpene Bakuchiol in Yeast. ACS Synth Biol 2024; 13:3600-3608. [PMID: 39474812 DOI: 10.1021/acssynbio.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bakuchiol (BAK), a specialized meroterpene, is known for its valuable biological properties and has recently gained prominence in cosmetology for its retinol-like functionality. However, low abundance in natural sources leads to environmentally unfriendly and unsustainable practices associated with crop-based manufacturing and chemical synthesis. Here, we identified a prenyltransferase (PT) from Psoralea corylifolia that catalyzes the reverse geranylation of a nonaromatic carbon in para-coumaric acid (p-CA), coupled with a decarboxylation step to form BAK. Given that the biosynthesis pathway of BAK is well elucidated, we engineered Saccharomyces cerevisiae to produce BAK, starting from glucose. To enhance the titer of BAK, we employed a multifaceted approach that included increasing the supply of precursors, balancing the fluxes in the two parallel biosynthetic pathways, engineering of prenyltransferase, and fusing enzymes. Consequently, the engineered yeast strains showed a marked improvement of 117.3-fold in BAK production, reaching a titer of 9.28 mg/L from glucose. Our work provides a viable approach for the sustainable microbial production of complex natural meroterpenes.
Collapse
Affiliation(s)
- Yi-Lei Zheng
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ye Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan-Qiu Liu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Peng X, Tang F, Yang Y, Li T, Hu X, Li S, Wu W, He K. Bidirectional effects and mechanisms of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115578. [PMID: 35917892 DOI: 10.1016/j.jep.2022.115578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.
Collapse
Affiliation(s)
- Xiaonian Peng
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Fang Tang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Sha Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Weihua Wu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
3
|
Adarsh Krishna TP, Edachery B, Athalathil S. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv 2022; 12:8815-8832. [PMID: 35424800 PMCID: PMC8985110 DOI: 10.1039/d1ra08771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Sunil Athalathil
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| |
Collapse
|
4
|
Guo Z, Li P, Wang C, Kang Q, Tu C, Jiang B, Zhang J, Wang W, Wang T. Five Constituents Contributed to the Psoraleae Fructus-Induced Hepatotoxicity via Mitochondrial Dysfunction and Apoptosis. Front Pharmacol 2021; 12:682823. [PMID: 34950022 PMCID: PMC8688997 DOI: 10.3389/fphar.2021.682823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Backgrounds: Psoraleae Fructus (PF)-induced hepatotoxicity has been reported in clinical and animal experiments. However, the hepatotoxic constituents and mechanisms underlying PF-induced toxicity have remained unclear. Therefore, this study explored the potentially toxic PF components and revealed their relative mechanisms. Methods: The hepatotoxicity of PF water (PFW) and ethanol (PFE) extracts was compared using Kunming mice. The different compositions between PFW and PFE, which were considered toxic compositions, were identified using the UHPLC-Q-Exactive MS method. Then, L02 and HepG2 cell lines were used to evaluate the toxicity of these compositions. Cell viability and apoptosis were determined through the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. An automatic biochemical analyzer detected the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). Lastly, we used high-content screening (HCS) to determine the levels of reactive oxygen species (ROS), lipid, and mitochondrial membrane potential (MMP). Results: The ethanol extraction process aggravated the hepatotoxicity of PF, causing more severe injuries. The content of psoralen, isopsoralen, bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol was higher in the PFE than PFW. Bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol induced cell apoptosis and the AST, ALT, and ALP leakages. Furthermore, these five constituents increased intracellular lipid accumulation and ROS levels but decreased the MMP level. Conclusion: The ethanol extraction process could induce severe PF hepatotoxicity. Bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol are the main hepatotoxic ingredients. This mechanism could be associated with oxidative stress and mitochondrial damage-mediated apoptosis. Taken together, this study provides a basis for the clinical application of PF that formulates and improves its herbal standards.
Collapse
Affiliation(s)
- Zhaojuan Guo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianjun Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqian Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
The Inhibition Effects of Shenmai Injection on Acetylcholine-Induced Catecholamine Synthesis and Secretion by Modulating Nicotinic Acetylcholine Receptor Ion Channels in Cultured Bovine Adrenal Medullary Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8514926. [PMID: 33456492 PMCID: PMC7787763 DOI: 10.1155/2020/8514926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/10/2020] [Accepted: 12/05/2020] [Indexed: 12/04/2022]
Abstract
Shenmai injection (SMI) has been widely used for the treatment of cardiovascular diseases in China. Cardiovascular disorders are often related to excessive catecholamine (CA) secretion. Here, we report the effects of SMI on CA secretion and synthesis in cultured bovine adrenal medullary cells. We found that SMI significantly reduced CA secretion induced by 300 μM acetylcholine (ACh). Cotreatment with SMI (10 μL/mL) and either of the ACh receptor α-subunit inhibitors, HEX (α3) or DhβE (α4β2), did not produce any further inhibition, indicating that SMI may play a role through α3 and α4β2 channels. Furthermore, SMI reduced tyrosine hydroxylase (TH) activity induced by ACh by inhibiting the phosphorylation of TH at Ser19 and Ser40. TH is phosphorylated at Ser19 by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and at Ser40 by protein kinase A (PKA). KN-93 and H89, the antagonists of CaM kinase II and PKA, respectively, inhibited the ACh-induced phosphorylation at Ser19 and Ser40, and the addition of SMI did not augment the inhibitory effect. Taken together, our results show that SMI likely inhibits CA secretion by blocking TH activity at its Ser19 and Ser40 sites.
Collapse
|
6
|
Jafernik K, Halina E, Ercisli S, Szopa A. Characteristics of bakuchiol - the compound with high biological activity and the main source of its acquisition - Cullen corylifolium (L.) Medik. Nat Prod Res 2020; 35:5828-5842. [PMID: 33185126 DOI: 10.1080/14786419.2020.1837813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The article presents the characteristics of bakuchiol - a natural compound valuable in cosmetology and pharmacology. The only source for obtaining this specific meroterpenic phenol is the fruit of the species Cullen corylifolium (Psoralea corylifolia). Bakuchiol has recently been playing a significant role in cosmetology as a "natural substitute" for retinol, free of side effects.Clinical studies confirm valuable cosmetological properties of bakuchiol, such as anti-ageing, anti-pigmentation and anti-acne effects. Scientific research has also shown valuable pharmacological properties of bakuchiol, such as anti-cancer, hepatoprotective, cardioprotective, hypoglycemic, hypolipemic, and antidepressant. In addition, antioxidant, anti-inflammatory and antimicrobal activities of bakuchiol, valuable from the point of view of both cosmetology and therapy, have also been confirmed.A separate part of the article is devoted to the botanical, chemical and pharmacological characteristics of the species C. corylifolium as the main source for obtaining bakuchiol.
Collapse
Affiliation(s)
- Karolina Jafernik
- Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Ekiert Halina
- Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Sezai Ercisli
- Department of Horticulture, Ataturk University, Agricultural Faculty, Erzurum, Turkey
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
7
|
Bakuchiol suppresses oestrogen/testosterone-induced Benign Prostatic Hyperplasia development through up-regulation of epithelial estrogen receptor β and down-regulation of stromal aromatase. Toxicol Appl Pharmacol 2019; 381:114637. [PMID: 31238046 DOI: 10.1016/j.taap.2019.114637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Estrogens and androgens play critical roles during benign prostatic hyperplasia (BPH) development. Estrogen receptors (ERs), androgen receptor (AR) and aromatase, the key conversion enzyme of androgen to estrogen, are thought to be the effective targets for BPH treatment. Bakuchiol (Ba)-containing herb Psoralea corylifolia has been long-termed used for BPH patients in traditional Chinese medicine while the role and regulatory mechanism of Ba involved remain unclear. Human prostatic cell lines WPMY-1 and BPH-1 and oestrodial/testosterone-induced BPH rats were used as the in vitro and in vivo models. Ba significantly inhibited the proliferation of WPMY-1 and BPH-1 cells. In E2/T-induced BPH model, Ba treatment also significantly inhibited the enlargement of prostate, decreased PI values, reduced the thickness of periglanular smooth muscle layer, and down-regulated the expressions of PCNA and smooth muscle cell marker α-SMA, all of which were highly induced in BPH rats. Moreover, the basal and PGE2-induced expressions of aromatase were reduced in Ba-stimulated WPMY-1 cells, while the expression of ERβ was highly increased in Ba-stimulated BPH-1 cells, both of which are consistent with the findings in Ba group in vivo. Ba induced ERE activity in BPH-1 cells as E2 did; however, silence of ERβ not ERα, blocked Ba-induced ERE activity while E2 still exhibited the significant ERE activity, indicating the regulation of estrogen signaling by Ba is particularly via ERβ. In conclusion, by down-regulation of stromal aromatase and up-regulation of epithelial ERβ, Ba contributes to the balance of estrogen and androgen signaling and further inhibits BPH development.
Collapse
|
8
|
Liu J, Zhao Y, Huang C, Li Y, Guo F. Prenylated flavonoid‐standardized extract from seeds of
Psoralea corylifolia
L. activated fat browning in high‐fat diet–induced obese mice. Phytother Res 2019; 33:1851-1864. [DOI: 10.1002/ptr.6374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jingwen Liu
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Yuanyuan Zhao
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Yiming Li
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Fujiang Guo
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
9
|
Shi M, Zhang J, Liu C, Cui Y, Li C, Liu Z, Kang W. Ionic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC. Molecules 2019; 24:molecules24091699. [PMID: 31052330 PMCID: PMC6540167 DOI: 10.3390/molecules24091699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 01/04/2023] Open
Abstract
Psoralea Fructus is widely used in traditional Chinese medicine (TCM), and the content of psoralen, isopsoralen, neobavaisoflavone, bavachin, psoralidin, isobavachalcone, and bavachinin A is the main quality control index of Psoralea Fructus because of its clinical effects. Thus, a fast and environmentally-benign extraction method of seven compounds in Psoralea Fructus is necessary. In this work, an ionic liquid-based ultrasonic-assisted method (ILUAE) for the extraction of seven compounds from Psoralea Fructus was proposed. Several ILs of different types and parameters, including the concentration of ILs, concentration of ethanol (EtOH), solid–liquid ratio, particle size, ultrasonic time, centrifugal speed, and ultrasonic power, were optimized by the Placket–Burman (PB) design and Box–Behnken response surface analysis. Under this optimal condition, the total extraction yield of the seven compounds in Psoralea Fructus was 18.90 mg/g, and significantly greater than the conventional 75% EtOH solvent extraction.
Collapse
Affiliation(s)
- Mengjun Shi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Juanjuan Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Yiping Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Changqin Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
10
|
Δ 3,2-Hydroxybakuchiol Attenuates Depression in Multiple Rodent Models Possibly by Inhibition of Monoamine Transporters in Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1325141. [PMID: 30026780 PMCID: PMC6031082 DOI: 10.1155/2018/1325141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Abstract
Δ3,2-Hydroxybakuchiol is isolated from Psoralea corylifolia (L.), which has therapeutic applications in traditional Chinese medicine. Our previous studies have showed that Δ3,2-hydroxybakuchiol inhibited the decreased activity of reserpinized mice, suggestive of its antidepressive potential. In this study, we explored the antidepressant profile of Δ3,2-hydroxybakuchiol in various rodent models and its possible monoamine-modulating mechanism. Δ3,2-Hydroxybakuchiol significantly reduced immobility time of mice in forced swim test and tail suspension test. Δ3,2-Hydroxybakuchiol also significantly increased sucrose consumption in chronic unpredictable mild stress (CUMS) rat model. Furthermore, isotope uptake study showed that Δ3,2-hydroxybakuchiol inhibited the activity of human dopamine transporter (DAT) and norepinephrine transporter (NET) in transporter-overexpressing pheochromocytoma (PC12) cells with IC50 values similar to the potency of bupropion. Microdialysis showed that Δ3,2-hydroxybakuchiol increased dopamine and norepinephrine concentration in rat striatum. In summary, Δ3,2-hydroxybakuchiol exerts antidepressant effects on various types of depression models through a possible mechanism of monoamine transporter inhibition.
Collapse
|
11
|
Synthesis and Evaluation of Bakuchiol Derivatives as Potential Anticancer Agents. Molecules 2018; 23:molecules23030515. [PMID: 29495380 PMCID: PMC6017251 DOI: 10.3390/molecules23030515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
A series of bakuchiol derivatives were synthesized and evaluated for their anti-proliferative and the inhibitory activities on SMMC7721 cell line migration using PX-478 as a positive control. The results showed (S,E)-4-(7-methoxy-3,7-dimethyl-3-vinyloct-1-en-1-yl)phenol (10) to have the best activity among the tested compounds, which included PX-478. In addition, compound 10 showed greater inhibitory activity than that of bakuchiol in the transwell migration and invasion assays at every dose. In western blotting tests, compound 10 showed a promising ability to downregulate the expression of HIF-1α and its associated downstream proteins MMP-2 and MMP-9. Moreover, this effect was dose-dependent and could represent a possible mechanism of action for the anticancer activity of compound 10.
Collapse
|
12
|
Kiyama R. Estrogenic Potentials of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1365-1399. [DOI: 10.1142/s0192415x17500756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen, a steroid hormone, is associated with several human activities, including environmental, industrial, agricultural, pharmaceutical and medical fields. In this review paper, estrogenic activity associated with traditional Chinese medicines (TCMs) is discussed first by focusing on the assays needed to detect estrogenic activity (animal test, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay and yeast two-hybrid assay), and then, their sources, the nature of activities (estrogenic or anti-estrogenic, or other types), and pathways/functions, along with the assay used to detect the activity, which is followed by a summary of effective chemicals found in or associated with TCM. Applications of estrogens in TCM are then discussed by a comprehensive search of the literature, which include basic study/pathway analysis, cell functions, diseases/symptoms and medicine/supplements. Discrepancies and conflicting cases about estrogenicity of TCM among assays or between TCM and their effective chemicals, are focused on to enlarge estrogenic potentials of TCM by referring to omic knowledge such as transcriptome, proteome, glycome, chemome, cellome, ligandome, interactome and effectome.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan
| |
Collapse
|
13
|
Kiyama R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 2017; 815:405-415. [PMID: 28970013 DOI: 10.1016/j.ejphar.2017.09.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Terpenes are made of the isoprene unit (C5), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan.
| |
Collapse
|
14
|
Zhang Y, Chen Z, Xu X, Zhou Q, Liu X, Liao L, Zhang Z, Wang Z. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J Sep Sci 2017; 40:4191-4202. [DOI: 10.1002/jssc.201700482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yimin Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Zhiyong Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Xiaokun Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Qiang Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Xiaolong Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Liping Liao
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Zijia Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
- Shanghai R&D Center for Standardization of Chinese Medicines; Shanghai People's Republic of China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The Shanghai Key Laboratory for Compound Chinese Medicines; Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
- Shanghai R&D Center for Standardization of Chinese Medicines; Shanghai People's Republic of China
| |
Collapse
|
15
|
Zarmouh NO, Eyunni SK, Soliman KFA. The Benzopyrone Biochanin-A as a reversible, competitive, and selective monoamine oxidase B inhibitor. Altern Ther Health Med 2017; 17:34. [PMID: 28069007 PMCID: PMC5223566 DOI: 10.1186/s12906-016-1525-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022]
Abstract
Background Monoamine oxidase-B (MAO-B) inhibitors are widely used in the treatment of Parkinson’s disease. They increase vital monoamine neurotransmitters in the brain. However, there is a need for safer natural reversible MAO inhibitors with MAO-B selectivity. Our previous studies showed that Psoralea corylifolia seeds (PCS) extract contains compounds that inhibit monoamine oxidase-B. Methods In this study, six of PCS constituents sharing a benzopyrone structure were investigated. The compounds Biochanin-A (BIO-A), isopsoralen, 6-prenylnaringenin, neobavaisoflavone, psoralen, and psoralidin, were tested for their ability to inhibit recombinant human MAO-A and B (hMAO-A and hMAO-B) isozymes. The ability of these compounds to inhibit MAO-A and MAO-B were compared to that of PCS ethanolic extract (PCSEE) using spectrophotometric assays and confirmed by luminescence assays. The highly potent and selective MAO-B inhibitor, BIO-A, was further investigated for both isozymes reversibility and enzyme kinetics. Molecular docking studies were used to predict the bioactive conformation and molecular interactions of BIO-A with both isozymes. Results The data obtained indicate that benzopyrones inhibited hMAO-A and hMAO-B with different degrees as confirmed with the luminescence assay. BIO-A inhibited hMAO-B with high potency and selectivity in the present study (IC50 = 0.003 μg/mL) and showing 38-fold more selectivity than PCSEE (hMAO-B IC50 = 3.03 μg/mL, 17-fold selectivity) without affecting hydrogen peroxide. Furthermore, BIO-A reversibly and competitively inhibited both hMAOs with significantly lower inhibitory constant (Ki) in hMAO-B (3.8 nM) than hMAO-A (99.3 nM). Our docking studies indicated that the H-bonds and hydrophobic interactions at the human MAO-A and MAO-B active sites contributed to the reversibility and selectivity of BIO-A. Conclusions The data obtained indicate that BIO-A is a potent, reversible and selective MAO-B inhibitor and may be recommended for further investigation in its possible use in the therapeutic management of Parkinson’s and Alzheimer’s diseases.
Collapse
|
16
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Zhang X, Zhao W, Wang Y, Lu J, Chen X. The Chemical Constituents and Bioactivities of Psoralea corylifolia Linn.: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:35-60. [PMID: 26916913 DOI: 10.1142/s0192415x16500038] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Psoralea corylifolia Linn. (P. corylifolia) is an important medicinal plant with thousands of years of clinical application. It has been widely used in many traditional Chinese medicine formulas for the treatment of various diseases such as leucoderma and other skin diseases, cardiovascular diseases, nephritis, osteoporosis, and cancer. Phytochemical studies indicated that coumarins, flavonoids, and meroterpenes are the main components of P. corylifolia, and most of these components are present in the seeds or fruits. The extracts and active components of P. corylifolia demonstrated multiple biological activities, including estrogenic, antitumor, anti-oxidant, antimicrobial, antidepressant, anti-inflammatory, osteoblastic, and hepatoprotective activities. This paper systematically summarized literatures on the chemical constituents and biological activities of P. corylifolia, which provided useful information for the further research and development toward this potent medicinal plant.
Collapse
Affiliation(s)
- Xuenong Zhang
- * Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,† State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenwen Zhao
- † State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Wang
- † State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinjian Lu
- † State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- † State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
18
|
Quantitative Analysis of Psoralea corylifolia Linne and its Neuroprotective and Anti-Neuroinflammatory Effects in HT22 Hippocampal Cells and BV-2 Microglia. Molecules 2016; 21:molecules21081076. [PMID: 27548120 PMCID: PMC6274380 DOI: 10.3390/molecules21081076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
The seeds of Psoralea corylifolia L. (P. corylifolia), also known as “Bo-Gol-Zhee” in Korea, are used in a traditional herbal medicine for treating various skin diseases. In the present study, we performed quantitative analyses of the seven standard components of P. corylifolia: psoralen, angelicin, neobavaisoflavone, psoralidin, isobavachalcone, bavachinin, and bakuchiol, using high-performance liquid chromatography. We also investigated the neuroprotective and anti-neuroinflammation effects of P. corylifolia and its standard components in the hippocampal cell line HT22 and microglia cell line BV-2. A 70% ethanol extract of P. corylifolia was prepared and the seven standard components were separated using C-18 analytical columns by gradient solvents with acetonitrile and water, and ultraviolet detection at 215, 225 and 275 nm. The analytical method showed high linearity, with a correlation coefficient of ≥0.9999. The amounts of the standard components ranged from 0.74 to 11.71 mg/g. Among the components, bakuchiol (11.71 mg/g) was the most potent phytochemical component of P. corylifolia. Furthermore, we analyzed the inhibitory effects of the components from P. corylifolia to determine the bioactive compound needed to regulate neuronal cell changes. Angelicin, isobavachalcone, and bakuchiol suppressed lipopolysaccharide (LPS)-stimulated nitric oxide production in LPS-treated BV-2 microglia more significantly than did the other components. In HT22 hippocampal cells, neobavaisoflavone and bakuchiol had more potent inhibitory activity against hydrogen peroxide-induced cell death. Taken together of the quantification and efficacy analyses, bakuchiol appeared to be the most potent bioactive phytochemical component of P. corylifolia for the potential treatment of neurodegenerative diseases.
Collapse
|
19
|
Zarmouh NO, Messeha SS, Elshami FM, Soliman KFA. Natural Products Screening for the Identification of Selective Monoamine Oxidase-B Inhibitors. ACTA ACUST UNITED AC 2016; 15. [PMID: 27341283 PMCID: PMC4898948 DOI: 10.9734/ejmp/2016/26453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims Monoamine oxidase-B inhibitors (MAO-BIs) are used for the initial therapy of Parkinson’s disease. Also, MAO-BIs have shown to be effective neuroprotective agents in several neurodegenerative diseases. However, some concerns exist regarding the long-term use of these compounds. Meanwhile, natural compounds showed potential MAO-B selective inhibitions. To date, few selective natural MAO-BIs have been identified. Therefore, the current study is designed to identify plants with potent and specific MAO-B inhibition. Study Design In this work, we utilized high throughput screening to evaluate the different plants ethanolic extract for their effectiveness to inhibit recombinant human (h)MAO-A and hMAO-B and to determine the relative selectivity of the top MAO-BI. Methodology Recombinant human isozymes were verified by Western blotting, and the 155 plants were screened. A continuous fluorometric screening assay was performed followed by two separate hMAO-A and hMAO-B microtiter screenings and IC50 determinations for the top extracts. Results In the screened plants, 9% of the extracts showed more than 1.5-fold relative inhibition of hMAO-B (RIB) and another 9% showed more than 1.5-fold relative inhibition of hMAO-A. The top extracts with the most potent RIBs were Psoralea corylifolia seeds, Phellodendron amurense bark, Glycyrrhiza uralensis roots, and Ferula assafoetida roots, with the highest RIB of 5.9-fold. Furthermore, extensive maceration of the promising extracts led to increase inhibitory effects with a preserved RIB as confirmed with luminescence assay. The top four extracts hMAO-BIs were equally potent (IC50= 1.3 to 3.8 μg/mL) with highly significant relative selectivities to inhibit hMAO-B (4.1- to 13.4-fold). Conclusion The obtained results indicate that Psoralea corylifolia seeds, Ferula assafoetida, Glycyrrhiza uralensis roots, and Phellodendron amurense ethanolic extracts have selective inhibitions for human MAO-B. Investigating these plant extracts as natural resources for novel selective MAO-BIs may lead to the development of molecules that can be used in the therapeutic management of neurodegenerative diseases including Parkinson’s disease.
Collapse
Affiliation(s)
- Najla O Zarmouh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Samia S Messeha
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Faisel M Elshami
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
20
|
Li L, Chen X, Liu CC, Lee LS, Man C, Cheng SH. Phytoestrogen Bakuchiol Exhibits In Vitro and In Vivo Anti-breast Cancer Effects by Inducing S Phase Arrest and Apoptosis. Front Pharmacol 2016; 7:128. [PMID: 27252650 PMCID: PMC4877368 DOI: 10.3389/fphar.2016.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
Phytoestrogen has been proposed as an alternative to hormone replacement therapy, which has been demonstrated to promote a high risk of breast cancer. However, the effect of phytoestrogen on breast cancer development has not been fully understood. Bakuchiol is an active ingredient of a traditional Chinese herbal medicine Fructus Psoraleae, the dried ripe fruit of Psoralea corylifolia L. (Fabaceae). The in vitro and in vivo estrogenic activities and anti-breast cancer effects of bakuchiol have not been well-studied. We found that bakuchiol induced the GFP expression in transgenic medaka (Oryzias melastigma, Tg, Chg:GFP) dose-dependently (0–1 μg/ml), demonstrating its in vivo estrogenic activity. Low dose of bakuchiol (1 μg/ml) induced the cell proliferation and ERα expression in MCF-7 cells, which could be blocked by the anti-estrogen ICI 182780, suggesting the in vitro estrogenic activity of bakuchiol. Our data indicated that high doses of bakuchiol (>2 μg/ml) inhibited breast cancer cell growth, with a stronger anti-proliferative effect than resveratrol, a widely studied analog of bakuchiol. High doses of bakuchiol (4, 7, and 10 μg/ml) were used for the further in vitro anti-breast cancer studies. Bakuchiol induced ERβ expression and suppressed ERα expression in MCF-7 cells. It also induced S phase arrest in both MCF-7 and MDA-MB-231 cells, which could be rescued by caffeine. Knock-down of p21 also marginally rescued S phase arrest in MCF-7 cells. The S phase arrest was accompanied by the upregulation of ATM, P-Cdc2 (Tyr15), Myt1, P-Wee1 (Ser642), p21 and Cyclin B1, suggesting that blocking of Cdc2 activation may play an important role in bakuchiol-induced S phase arrest. Furthermore, bakuchiol induced cell apoptosis and disturbed mitochondrial membrane potential in MCF-7 cells. The bakuchiol-induced apoptosis was associated with increased expression of Caspase family and Bcl-2 family proteins, suggesting that bakuchiol may induce apoptosis via intrinsic apoptotic pathway. The in vivo anti-breast cancer effect of bakuchiol was further proved in zebrafish (Danio rerio, wild-type AB) xenografts. 0.5 μg/ml of bakuchiol significantly reduced the MCF-7 cell mass in zebrafish xenografts. Overall, these results suggested the potential of using bakuchiol in HRT and breast cancer treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Sciences, City University of Hong Kong Hong Kong, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited Hong Kong, China
| | - Chi C Liu
- Department of Biomedical Sciences, City University of Hong Kong Hong Kong, China
| | - Lai S Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong, China
| | - Cornelia Man
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong, China
| | - Shuk H Cheng
- Department of Biomedical Sciences, City University of Hong Kong Hong Kong, China
| |
Collapse
|
21
|
Evaluation of the Inhibitory Effects of Bavachinin and Bavachin on Human Monoamine Oxidases A and B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:852194. [PMID: 26557867 PMCID: PMC4629031 DOI: 10.1155/2015/852194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022]
Abstract
Monoamine oxidase B inhibitors (MAO-BIs) are used in the early management of Parkinson's disease (PD). Long-term suspected side effects of MAO-B classical inhibitors established the need for safer alternative therapeutic agents. In our study, the flavanone bavachinin (BNN) and its analog bavachin (BVN) found in the seeds of Psoralea corylifolia L. ethanolic extract (PCSEE) were investigated for their human MAO-A and MAO-B (hMAO-A and hMAO-B) inhibition. Both PCSEE and BNN effectively reduced hMAO-B activity more than hMAO-A while BVN had activating effects. BNN showed selective hMAO-B inhibition (IC50 ~ 8.82 μM) more than hMAO-A (IC502009;~ 189.28 μM). BNN in the crude extract was determined by HPLC, also validated by TLC showing a yield of 0.21% PCSEE dry weight. BNN competitively inhibited hMAO-A and hMAO-B, with a lower hMAO-B Ki than hMAO-A Ki by 10.33-fold, and reduced hMAO-B Km/Vmax efficiency ratio to be comparable to the standard selegiline. Molecular docking examination of BNN and BVN predicted an indirect role of BNN C7-methoxy group for its higher affinity, selectivity, and reversibility as an MAO-BI. These findings suggest that BNN, which is known to be a potent PPAR-γ agonist, is a selective and competitive hMAO-B inhibitor and could be used in the management of PD.
Collapse
|
22
|
Ye MF, Liu Z, Lou SF, Chen ZY, Yu AY, Liu CY, Yu CY, Zhang HF, Zhang J. Flos Albiziae aqueous extract and its active constituent quercetin potentiate the hypnotic effect of pentobarbital via the serotonergic system. Biomed Rep 2015; 3:835-838. [PMID: 26623026 DOI: 10.3892/br.2015.518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Flos albiziae (FA) is reportedly used for treatment of insomnia and anxiety in traditional medicine. The hypnotic effect of an extract of FA (FAE) and its constituent quercetin [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one, QR] was examined in mice. QR is a widely distributed natural flavonoid abundant in FA flowers and other tissues. The possible mechanisms underlying the hypnotic effects of FAE and QR were investigated using behavioral pharmacology. FAE and QR significantly potentiated pentobarbital-induced [50 mg/kg, intraperitoneal (ip)] sleep (prolonged sleeping time; shortened sleep latency) in a dose-dependent manner, and these effects were augmented by administration of 5-hydroxytryptophan (5-HTP), a precursor of 5-hydroxytryptamine. With a sub-hypnotic dose of pentobarbital (28 mg/kg, ip), FAE and QR significantly increased the rate of sleep onset and were synergistic with 5-HTP (2.5 mg/kg, ip). Pretreatment with p-chlorophenylalanine, an inhibitor of tryptophan hydroxylase, significantly decreased sleeping time and prolonged sleep latency in pentobarbital-treated mice, whereas FAE and QR significantly reversed this effect. Data show that FAE and QR have hypnotic activity, possibly mediated by the serotonergic system. The present study offers a rationale for the use of FA in treating sleep disorders associated with serotonin system dysfunction.
Collapse
Affiliation(s)
- Meng-Fei Ye
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zheng Liu
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China ; Laboratory of Forensic Toxicology, Judicial Identification Center of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Shu-Fang Lou
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhen-Yong Chen
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Ai-Yue Yu
- Department of Basic Course, Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, P.R. China
| | - Chun-Yan Liu
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Chao-Yang Yu
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hua-Fang Zhang
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jian Zhang
- Department of Basic Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
23
|
Birri MA, Franco MA, Vallejo MG, Carro-Juárez M, Agnese AM. Huperzia saururus Lam. Trevis. (Lycopodiaceae) facilitates ejaculation in spinal cord transected male rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:38-44. [PMID: 25245770 DOI: 10.1016/j.jep.2014.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/30/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huperzia saururus (Lam.) Trevis. has an extensive ethnopharmacological use, mainly because of its aphrodisiac properties. The species is consumed as decoctions or infusions in traditional medicine. The purpose of the present research was to determine if Huperzia saururus is able to increase sexual potency by evaluating the ejaculatory response, in the presence of a decoction in spinal cord transected male rats. MATERIALS AND METHODS The fictive ejaculation model to record the rhythmic contractions of the bulbospongiosus muscles that accompany ejaculation as an indicator of ejaculation occurrence was used. Sexually experienced male Wistar rats were used. The activation of the fictive ejaculation by the i.v. administration of a decoction was tested, as well as the effects of the oxytocinergic, cholinergic, adrenergic and nitrergic antagonism upon the pro-ejaculatory activity of Huperzia saururus. RESULTS Decoction (3µg/animal) was able to activate the fictive ejaculation in spinal male rats, producing a statistically significant diminution on the latency of discharge parameter and a statistically significant augment for the number of discharges. Moreover, when sequential treatments using antagonists plus decoction were administered, the effects produced showed that prazosin prevent the pro-ejaculatory effect of the decoction and that the four antagonists assayed blocked the facilitatory effect of Huperzia saururus since the facilitation in the latency of response was prevented, and the number of discharges was reduced. Together these findings support the notion that the decoction exerts an aphrodisiac effect influencing the ejaculatory potency which is partially mediated by oxytocinergic, cholinergic, adrenergic and nitrergic spinal mechanisms. CONCLUSION In agreement to the ethnopharmacological uses, Huperzia saururus decoction has aphrodisiac properties by influence on the ejaculatory potency.
Collapse
Affiliation(s)
- M A Birri
- IMBIV, CONICET y Farmacognosia, Departamento de Farmacia, Fac. de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M A Franco
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, C.P. 90000, Col. Centro, Tlaxcala, Mexico
| | - M G Vallejo
- IMBIV, CONICET y Farmacognosia, Departamento de Farmacia, Fac. de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, C.P. 90000, Col. Centro, Tlaxcala, Mexico
| | - A M Agnese
- IMBIV, CONICET y Farmacognosia, Departamento de Farmacia, Fac. de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
24
|
Huang MY, Chen L, Li R, Jia X, Hong R. Synthesis of (±)-Bakuchiol via a Pot-Economy Approach. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|