1
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Elsaid S, Wu X, Tee SS. Fructose vs. glucose: modulating stem cell growth and function through sugar supplementation. FEBS Open Bio 2024; 14:1277-1290. [PMID: 38923793 PMCID: PMC11301265 DOI: 10.1002/2211-5463.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
In multicellular organisms, stem cells are impacted by microenvironmental resources such as nutrient availability and oxygen tension for their survival, growth, and differentiation. However, the accessibility of these resources in the pericellular environment greatly varies from organ to organ. This divergence in resource availability leads to variations in the potency and differentiation potential of stem cells. This study aimed to explore the distinct effects of glucose and fructose, as well as different oxygen tensions, on the growth dynamics, cytokine production, and differentiation of stem cells. We showed that replacing glucose with fructose subjected stem cells to stress, resulting in increased Hif1α expression and stability, which in turn led to a reduction in cell proliferation, and alterations in cytokine production. However, fructose failed to induce differentiation of human mesenchymal stem cells (hMSCs) as well as mouse fibroblasts into mature adipocytes compared to glucose, despite the upregulation of key markers of adipogenesis, including C/EBPβ, and PPARγ. Conversely, we showed that fructose induced undifferentiated mouse fibroblasts to release cytokines associated with senescence, including IL1α1, IL6, IL8, MCP1, and TNF1α, suggesting that these cells were undergoing lipolysis. Taken together, our results suggest that altering the culture conditions through changes in hexose levels and oxygen tension places considerable stress on stem cells. Additional research is required to further characterize the mechanisms governing stem cell response to their microenvironments.
Collapse
Affiliation(s)
- Salaheldeen Elsaid
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xiangdong Wu
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Sui Seng Tee
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
3
|
Krawic C, Luczak MW, Valiente S, Zhitkovich A. Atypical genotoxicity of carcinogenic nickel(II): Linkage to dNTP biosynthesis, DNA-incorporated rNMPs, and impaired repair of TOP1-DNA crosslinks. J Biol Chem 2023; 299:105385. [PMID: 37890780 PMCID: PMC10692736 DOI: 10.1016/j.jbc.2023.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a genetic disease requiring multiple mutations for its development. However, many carcinogens are DNA-unreactive and nonmutagenic and consequently described as nongenotoxic. One of such carcinogens is nickel, a global environmental pollutant abundantly emitted by burning of coal. We investigated activation of DNA damage responses by Ni and identified this metal as a replication stressor. Genotoxic stress markers indicated the accumulation of ssDNA and stalled replication forks, and Ni-treated cells were dependent on ATR for suppression of DNA damage and long-term survival. Replication stress by Ni resulted from destabilization of RRM1 and RRM2 subunits of ribonucleotide reductase and the resulting deficiency in dNTPs. Ni also increased DNA incorporation of rNMPs (detected by a specific fluorescent assay) and strongly enhanced their genotoxicity as a result of repressed repair of TOP1-DNA protein crosslinks (TOP1-DPC). The DPC-trap assay found severely impaired SUMOylation and K48-polyubiquitination of DNA-crosslinked TOP1 due to downregulation of specific enzymes. Our findings identified Ni as the human carcinogen inducing genome instability via DNA-embedded ribonucleotides and accumulation of TOP1-DPC which are carcinogenic abnormalities with poor detectability by the standard mutagenicity tests. The discovered mechanisms for Ni could also play a role in genotoxicity of other protein-reactive carcinogens.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Sophia Valiente
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
5
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Xiong Z, Yang F, Xu T, Yang Y, Wang F, Zhou G, Wang Q, Guo X, Xing C, Bai H, Chen J, Wu Y, Yang S, Cao H. Selenium alleviates cadmium-induced aging via mitochondrial quality control in the livers of sheep. J Inorg Biochem 2022; 232:111818. [DOI: 10.1016/j.jinorgbio.2022.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023]
|
7
|
Meyers LM, Krawic C, Luczak MW, Zhitkovich A. Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors. Toxicol Appl Pharmacol 2022; 445:116041. [DOI: 10.1016/j.taap.2022.116041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
|
8
|
Jin X, Kuang Y, Li L, Li H, Zhao T, He Y, Di C, Kang J, Yuan L, Yu B, Li Q. A positive feedback circuit comprising p21 and HIF-1α aggravates hypoxia-induced radioresistance of glioblastoma by promoting Glut1/LDHA-mediated glycolysis. FASEB J 2022; 36:e22229. [PMID: 35199870 DOI: 10.1096/fj.202101736r] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The radioresistance induced by hypoxia is the major obstacle in the successful treatment of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, through which mediates the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli. In this study, we discovered a novel function of p21, which participated in the regulation of metabolic pathways under hypoxia. We found that p21 was upregulated in glioblastoma (GBM) cells under hypoxic conditions, which enhanced the radioresistance of GBM cells. In principle, HIF-1α is bound directly to the hypoxia response elements (HREs) of the p21 promoter to enhance its transcription activity, in turn, p21 also promoted the transcription of HIF-1α at the mRNA level and maintained HIF-1α function under oxygen deficiency. The positive correlation between p21 and HIF-1α augmented Glut1/LDHA-mediated glycolysis and aggravated the radioresistance of GBM cells. Thus, our results constructed a positive feedback circuit comprising p21/HIF-1α that might play a key role in enhancing the radioresistance of GBM under hypoxia.
Collapse
Affiliation(s)
- Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yufang He
- The Third Hospital of Gansu Province, Lanzhou, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingyan Yuan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| |
Collapse
|
9
|
Khatoon A, Ali Khan Rao R, Nasar A. Preparation and characterization of epichlorohydrin treated Putranjiva roxburghii seeds as a novel adsorbent: removal of Ni(II) from the artificial and real electroplating wastewaters. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1867582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Amna Khatoon
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Rifaqat Ali Khan Rao
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Abu Nasar
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Luczak MW, Krawic C, Zhitkovich A. NAD + metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells. Cell Cycle 2021; 20:1812-1827. [PMID: 34382917 DOI: 10.1080/15384101.2021.1959988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined a control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and more effectively, by boosting cellular production of NAD+, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expression of NAMPT which is a rate-limiting enzyme in the main biosynthetic pathway for NAD+. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD+ production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.AbbreviationsDMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: β-nicotinamide mononucleotide.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Hoeltgebaum D, Pedron T, Paniz FP, Souza AA, Romoli JCZ, Lini RS, Pante GC, Rocha GHO, Batista BL, Machinski Junior M. Metals in Brazilian family farming grapes and estimated daily intake. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:236-243. [PMID: 34142923 DOI: 10.1080/19393210.2021.1933612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine concentrations of metals in peel, pulp, and seeds of grapes obtained from family farms in Brazil, compare them to the maximum threshold levels and to evaluate the risk by estimating the daily intake (EDI). Grape samples were collected from farms and levels of Cd, Cr, Cu, Mn, Ni, Pb and Zn were assessed via ICP-MS. The highest metal levels were found in grape peels, Cu at the highest concentration (107.6 mg kg-1). Cr, Cu, and Pb were found at concentrations which exceeded maximum threshold levels. The EDI of Cd, Cu and Pb through consumption of grapes for the assessed Brazilian population was 0.29, 1822 and 3.02 µg/kg bw/day, respectively. The EDI of Cu was above the Provisionary Tolerable Daily Intake (PTDI). Thus, there are possible health risks due to the occurrence of Cu in Brazilian grapes.
Collapse
Affiliation(s)
- Danielle Hoeltgebaum
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil
| | - Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Fernanda Pollo Paniz
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Aline Amenência Souza
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil
| | | | - Renata Sano Lini
- Post-Graduate Program in Biosciences and Physiopathology, State University of Maringa, Maringa, Brazil
| | | | - Gustavo Henrique Oliveira Rocha
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Miguel Machinski Junior
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil.,Post-Graduate Program in Food Science, State University of Maringa, Maringa, Brazil.,Department of Basic Health Sciences, State University of Maringa, Maringa, Brazil
| |
Collapse
|
12
|
Xu C, Xu J, Zhang X, Xu S, Liu Q, Weng Z, Gu A. Serum nickel is associated with craniosynostosis risk: Evidence from humans and mice. ENVIRONMENT INTERNATIONAL 2021; 146:106289. [PMID: 33276314 DOI: 10.1016/j.envint.2020.106289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND To date, few studies have explored the effects of exposure to metal mixtures on adverse developmental outcomes, and no reported studies have linked metal exposure to craniosynostosis (CS). The purpose of this study is to investigate the association between metal exposure and the risk of CS by conducting epidemiological and experimental studies. METHODS Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentrations of 6 metals (chromium [Cr], nickel [Ni], tin [Sn], arsenic [As], thallium [Tl], and lead [Pb]) in serum samples from 174 CS patients and 85 control individuals. Non-syndromic patients with isolated sagittal suture closure were selected as the case group, and healthy children matched by sex and age were selected as controls. Bayesian kernel machine regression (BKMR) models were used to account for joint metal effects. Multiple logistic regression analysis was used to explore the association between metal concentration and CS occurrence, with adjustment for potential confounders. During pregnancy, mice were exposed to Ni (0, 0.05, or 0.1 g/kg/day) until weaning, and the widths of the sutures and shapes of the skull were analysed by micro-CT 3D imaging and histological analysis. MC3T3-E1 cells were treated with Ni (0, 0.005, or 0.05 μg/mL) for 72 h. Alkaline phosphate (ALP) staining and Alizarin red staining were performed to observe the development of osteoblasts. The expression levels of osteoblast-related genes were also detected. RESULTS A positive association between the metal mixture and CS risk was observed based on population data; the Ni group had the highest conditional posterior inclusion probability (PIP), at 0.8416, and in the fully adjusted model, the highest Ni exposure level had a more significant association with CS (coefficient = 2.65, 95% CI: 0.29, 5.02) than the lowest Ni exposure level. The mean widths of the sagittal sutures in mice were 8.8 ± 0.6 mm in the control group, 8.0 ± 0.8 mm in the 0.05 g/kg/day group and 6.8 ± 0.4 mm in the 0.1 g/kg/day group. After Ni exposure, ALP gene expression in skull tissue was increased, and ALP activity was increased in MC3T3-E1 cells. Moreover, increased collagen content in mouse skull sections and elevated osteocalcin (OCN) expression in MC3T3-E1 cells were observed in the Ni-treated groups compared to the control group. CONCLUSIONS This study is the first to provide evidence that increased serum Ni was associated with an increased risk of CS. Early life exposure to Ni promoted osteogenesis during skull growth, which may contribute to the development of CS.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Shuqin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Yubolphan R, Phuagkhaopong S, Sangpairoj K, Sibmooh N, Power C, Vivithanaporn P. Intracellular nickel accumulation induces apoptosis and cell cycle arrest in human astrocytic cells. Metallomics 2020; 13:6035243. [PMID: 33570137 DOI: 10.1093/mtomcs/mfaa006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Nickel, a heavy metal found in electronic wastes and fume from electronic cigarettes, induces neuronal cell death and is associated with neurocognitive impairment. Astrocytes are the first line of defense against nickel after entering the brain; however, the effects of nickel on astrocytes remain unknown. Herein, we investigated the effect of nickel exposure on cell survival and proliferation and the underlying mechanisms in U-87 MG human astrocytoma cells and primary human astrocytes. Intracellular nickel levels were elevated in U-87 MG cells in a dose- and time-dependent manner after exposure to nickel chloride. The median toxic concentrations of nickel in astrocytoma cells and primary human astrocytes were 600.60 and >1000 µM at 48 h post-exposure, respectively. Nickel exposure triggered apoptosis in concomitant with the decreased expression of anti-apoptotic B-cell lymphoma protein (Bcl-2) and increased caspase-3/7 activity. Nickel induced reactive oxygen species formation. Additionally, nickel suppressed astrocyte proliferation in a dose- and time-dependent manner by delaying G2 to M phase transition through the upregulation of cyclin B1 and p27 protein expression. These results indicate that nickel-induced cytotoxicity of astrocytes is mediated by the activation of apoptotic pathway and disruption of cell cycle regulation.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kant Sangpairoj
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Christopher Power
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pornpun Vivithanaporn
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
14
|
Mascarenhas S, Mutnuri S, Ganguly A. Silica - A trace geogenic element with emerging nephrotoxic potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:297-317. [PMID: 30029111 DOI: 10.1016/j.scitotenv.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Silica is a trace-geogenic compound with limited-bioavailability. It inflicts health-perils like pulmonary-silicosis and chronic kidney disease (CKD), when available via anthropogenic-disturbances. Amidst silica-imposed pathologies, pulmonary toxicological-mechanisms are well-described, ignoring the renal-pathophysiological mechanisms. Hence, the present-study aimed to elucidate cellular-cum-molecular toxicological-mechanisms underlying silica-induced renal-pathology in-vitro. Various toxicity-assessments were used to study effects of silica on the physiological-functions of HK-cells (human-kidney proximal-tubular cells - the toxin's prime target) on chronic (1-7 days) sub-toxic (80 mg/L) and toxic (100-120 mg/L) dosing. Results depicted that silica triggered dose-cum-time dependent cytotoxicity/cell-death (MTT-assay) that significantly increased on long-term dosing with ≥100 mg/L silica; establishing the nephrotoxic-potential of this dose. Contrarily, insignificant cell-death on sub-toxic (80 mg/L) dosing was attributed to rapid intracellular toxin-clearance at lower-doses preventing toxic-effects. The proximal-tubular (HK-cells) cytotoxicity was found to be primarily mediated by silica-triggered incessant oxidative-stress (elevated ROS).·This enhanced ROS inflicted severe inflammation and subsequent fibrosis, evident from increased pro-inflammatory-cum-fibrogenic cytokines generation (IL-1β, IL-2, IL-6, TNF-α and TGF-β). Simultaneously, ROS induced persistent DNA-damage (Comet-assay) that stimulated G2/M arrest for p53-mediated damage-repair, aided by checkpoint-promoter (Chk1) activation and mitotic-inducers (i.e. Cdc-25, Cdk1, cyclinB1) inhibition. However, DNA-injuries surpassed the cellular-repair, which provoked the p53-gene to induce mitochondrial-mediated apoptotic cell-death via activation of Bax, cytochrome-c and caspase-cascade (9/3). This persistent apoptotic cell-death and simultaneous incessant inflammation culminated in the development of tubular-atrophy and fibrosis, the major pathological-manifestations of CKD. These findings provided novel-insights into the pathological-mechanisms (cellular and molecular) of silica-induced CKD, inflicted on chronic toxic-dosing (≥100 mg/L).Thereby, encouraging the development of therapeutic-strategies (e.g. anti-oxidant treatment) for specific molecular-targets (e.g. ROS) to retard silica-induced CKD-progression, for reduction in the global-CKD burden.
Collapse
Affiliation(s)
- Starlaine Mascarenhas
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Srikanth Mutnuri
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| |
Collapse
|