1
|
Liang X, Chen J, Yan P, Chen Z, Gao C, Bai R, Tang J. The highly conserved region within exonuclease III-like in PML-I regulates the cytoplasmic localization of PML-NBs. J Biol Chem 2024; 300:107872. [PMID: 39395810 PMCID: PMC11602975 DOI: 10.1016/j.jbc.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The sub-nuclear protein structure PML-NB regulates a wide range of important cellular functions, while its abnormal cytoplasmic localization may have pathological consequences. However, the nature of this aberrant localization remains poorly understood. In this study, we unveil that PML-I, the most conserved and abundant structural protein of PML-NB, possesses potent cytoplasmic targeting ability within the N-terminal half of the exonuclease III-like domain encoded by its unique exon 9, independent of the known nuclear localization signal. Fusion of this region to PML-VI can relocate PML-VI from the nucleus to the cytosol. Structural and deletion analysis revealed that the cytoplasmic targeting ability of this domain was restrained by the sequences encoded by exon 8a and the 3' portion of exon 9 in PML-I. Deletion of either of these regions relocates PML-I to the cytosol. Furthermore, we observed a potential interaction between the ER-localized TREX1 and the cytoplasmic-located PML-I mutants. Our results suggest that perturbation of the EXO-like domain of PML-I may represent an important mode to translocate PMLs from the nucleus to the cytosol, thereby interfering with the normal nuclear functions of PML-NBs.
Collapse
Affiliation(s)
- Xinxin Liang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinwen Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Yan
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Jan Fada B, Guha U, Zheng Y, Reward E, Kaadi E, Dourra A, Gu H. A Novel Recognition by the E3 Ubiquitin Ligase of HSV-1 ICP0 Enhances the Degradation of PML Isoform I to Prevent ND10 Reformation in Late Infection. Viruses 2023; 15:v15051070. [PMID: 37243155 DOI: 10.3390/v15051070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Upon viral entry, components of ND10 nuclear bodies converge with incoming DNA to repress viral expression. The infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) contains a RING-type E3 ubiquitin ligase that targets the ND10 organizer, PML, for proteasomal degradation. Consequently, ND10 components are dispersed and viral genes are activated. Previously, we reported that ICP0 E3 differentiates two similar substrates, PML isoforms I and II, and demonstrated that SUMO-interaction has profound regulatory effects on PML II degradation. In the present study, we investigated elements that regulate the PML I degradation and found that: (i) two regions of ICP0 flanking the RING redundantly facilitate the degradation of PML I; (ii) downstream of the RING, the SUMO-interaction motif located at residues 362-364 (SIM362-364) targets the SUMOylated PML I in the same manner as that of PML II; (iii) upstream of the RING, the N-terminal residues 1-83 mediate PML I degradation regardless of its SUMOylation status or subcellular localization; (iv) the reposition of residues 1-83 to downstream of the RING does not affect its function in PML I degradation; and (v) the deletion of 1-83 allows the resurgence of PML I and reformation of ND10-like structures late in HSV-1 infection. Taken together, we identified a novel substrate recognition specific for PML I, by which ICP0 E3 enforces a continuous PML I degradation throughout the infection to prevent the ND10 reformation.
Collapse
Affiliation(s)
- Behdokht Jan Fada
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Udayan Guha
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Yi Zheng
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Eleazar Reward
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Elie Kaadi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Ayette Dourra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Haidong Gu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Maimaitiyiming Y, Wang QQ, Yang C, Ogra Y, Lou Y, Smith CA, Hussain L, Shao YM, Lin J, Liu J, Wang L, Zhu Y, Lou H, Huang Y, Li X, Chang KJ, Chen H, Li H, Huang Y, Tse E, Sun J, Bu N, Chiou SH, Zhang YF, Hua HY, Ma LY, Huang P, Ge MH, Cao FL, Cheng X, Sun H, Zhou J, Vasliou V, Xu P, Jin J, Bjorklund M, Zhu HH, Hsu CH, Naranmandura H. Hyperthermia Selectively Destabilizes Oncogenic Fusion Proteins. Blood Cancer Discov 2021; 2:388-401. [PMID: 34661159 PMCID: PMC8513904 DOI: 10.1158/2643-3230.bcd-20-0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The PML/RARα fusion protein is the oncogenic driver in acute promyelocytic leukemia (APL). Although most APL cases are cured by PML/RARα-targeting therapy, relapse and resistance can occur due to drug-resistant mutations. Here we report that thermal stress destabilizes the PML/RARα protein, including clinically identified drug-resistant mutants. AML1/ETO and TEL/AML1 oncofusions show similar heat shock susceptibility. Mechanistically, mild hyperthermia stimulates aggregation of PML/RARα in complex with nuclear receptor corepressors leading to ubiquitin-mediated degradation via the SIAH2 E3 ligase. Hyperthermia and arsenic therapy destabilize PML/RARα via distinct mechanisms and are synergistic in primary patient samples and in vivo, including three refractory APL cases. Collectively, our results suggest that by taking advantage of a biophysical vulnerability of PML/RARα, thermal therapy may improve prognosis in drug-resistant or otherwise refractory APL. These findings serve as a paradigm for therapeutic targeting of fusion oncoprotein-associated cancers by hyperthermia. SIGNIFICANCE Hyperthermia destabilizes oncofusion proteins including PML/RARα and acts synergistically with standard arsenic therapy in relapsed and refractory APL. The results open up the possibility that heat shock sensitivity may be an easily targetable vulnerability of oncofusion-driven cancers.See related commentary by Wu et al., p. 300.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yasumitsu Ogra
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yinjun Lou
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Clayton A. Smith
- Blood Disorders and Cellular Therapies Center, University of Colorado Hospital, Denver, Colorado
| | - Liaqat Hussain
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ming Shao
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot, China
| | - Jiebo Lin
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Liu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhu
- Department of Environmental Sciences, Yale University School of Public Health, New Haven, Connecticut
| | - Haiyan Lou
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Huang
- Zhejiang Province Lishui Municipal Hospital, Lishui, China
| | - Xiaoxia Li
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kao-Jung Chang
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan, China
| | - Hao Chen
- Division of Newborn Medicine and Program in Epigenetics, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hongyan Li
- Department of Chemistry, the University of Hong Kong, Hong Kong, China
| | - Ying Huang
- Institute of Genetics, Zhejiang University, and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eric Tse
- Department of Medicine, the University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Jie Sun
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shih-Hwa Chiou
- Taipei Veterans General Hospital Department of Medical Research, Taipei, Taiwan, China
| | - Yan Fang Zhang
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Li Ya Ma
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ming Hua Ge
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feng-Lin Cao
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaodong Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongzhe Sun
- Department of Chemistry, the University of Hong Kong, Hong Kong, China
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Vasilis Vasliou
- Department of Environmental Sciences, Yale University School of Public Health, New Haven, Connecticut
| | - Pengfei Xu
- Institute of Genetics, Zhejiang University, and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mikael Bjorklund
- Zhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Hu Zhu
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|