1
|
Su H, Xi J, Miao M, Liang H, Chen Y, Wang Z, Zhou Y, Jin Y, Ji H, Yuan W. Bisphenol analogs exposure in 4-year-old children and their intelligence quotient at 6 years: A prospective cohort study. ENVIRONMENTAL RESEARCH 2025; 276:121528. [PMID: 40185270 DOI: 10.1016/j.envres.2025.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Prenatal exposure to bisphenol A (BPA) has been shown to impact offspring cognition, behavior, and intelligence. However, whether co-exposure to bisphenol analogs (BPs) during childhood affects children's intelligence remains unclear. We included 465 mother-child pairs from the Shanghai Minhang Birth Cohort Study to examine the impact of children's exposure to BPs at 4 years of age on the intelligence quotient (IQ) measured at 6 years. BPs concentrations were measured in single-spot urine samples collected from 4-year-old children. The Wechsler Intelligence Scale for Children was used to evaluate IQ at 6 years. Multiple linear regression models were used to examine the associations between BPs and IQ. Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the joint and single-exposure effects of BPs mixture. In girls, exposure to bisphenol F (BPF) was inversely associated with Full-Scale IQ (FSIQ) and Perceptual Reasoning Index (PRI) (βFSIQ = -5.46, 95 % confidence interval [CI]: -9.97, -0.94; βPRI = -5.14, 95 % CI: -9.95, -0.32). By BKMR, BPF contributed the most to the joint effect of BPs in girls. The association remained robust after adjusting for maternal IQ. In boys, exposure to tetrachlorobisphenol A seemed to be associated with an increase in FSIQ and PRI; however, the number of exposed boys was small. Our study suggests that BPs exposure at 4 years of age may be associated with a lower IQ at 6 years in girls. BPF may not be a safe substitute for BPA. Further epidemiological studies are required to confirm these findings.
Collapse
Affiliation(s)
- Huijia Su
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yinliu Jin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
2
|
Sahu A, Malik V, Verma R. Melatonin Improves Lactational Bisphenol S Induced Pre-Pubertal and Pubertal Testicular Impairments in Offspring. Reprod Sci 2025; 32:1042-1055. [PMID: 40085396 DOI: 10.1007/s43032-025-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Lactational period is of extreme importance for nourishing and fostering growth in neonates. Bisphenol S (BPS) a congener of bisphenol A (BPA) is an emerging environmental toxicant reported to have deleterious effects on reproductive health. Indirect exposure of BPS to the suckling infants via breastmilk is less explored although it can lead to various public health issues. Therefore, we investigated harmful effects of lactational BPS exposure on pre-pubertal and pubertal testicular functions of the offspring and its possible amelioration by melatonin. Lactating dams were divided into 4 groups: control, melatonin treated (3 mg/kg BW), BPS treated (150 mg/kg BW) and BPS + melatonin co-treatment; the male offspring were evaluated at pre-pubertal (PND 22) and pubertal (PND 42) testicular developmental stages. Lactational BPS exposure affected testicular physiology, led to histological abnormalities, hormonal imbalance, alters blood-testis-barrier (E-cadherin/connexin-43), redox modulators (SIRT-1/FOXO-1/PGC-1α; Nrf2/HO-1/pSTAT-3) and germ cell dynamicity (PCNA/TUNEL positive cells) in both pre-pubertal and pubertal mice. However, melatonin supplementation to BPS exposed lactating mothers improved testicular histoarchitecture in offspring, enhanced testicular antioxidant status, modulated expression of redox/survival and BTB markers that promoted germ cell proliferation. In conclusion, our study shows that lactational BPS exposure could be deleterious to testicular physiology that may result in male infertility/subfertility in later life while melatonin supplementation improves the reproductive health compromised by lactational BPS exposure.
Collapse
Affiliation(s)
- Aishwarya Sahu
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Vartika Malik
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Rakesh Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India.
| |
Collapse
|
3
|
Wang B, Yang Z, Zhang K, Wang L, Song Y, Li Q, Sun M. Embryonic BPF exposure induces neurodevelopmental and neurobehavioral toxicity by affecting neural stem cell proliferation in Drosophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125844. [PMID: 39947578 DOI: 10.1016/j.envpol.2025.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BPF is a ubiquitous environmental chemical that has been shown to affect neurodevelopmental toxicity from animals to humans. Whether BPF exposure affects neural stem cell proliferation and differentiation is unknown. Here, we utilized a method of permeabilization of Drosophila embryos to analyze the effects of exposure to 0.5 mM, 1 mM, and 2 mM BPF on the proliferation and differentiation of neural stem cells. Our results showed that BPF exposure reduced the number of neuroblasts and intermediate neural progenitors during the embryonic stage, which caused the neuron/glial cell ratio to be out of balance, with a decrease in the number of neurons and an increase in the number of glial cells. BPF exposure caused neurotoxicity by reducing the activities of the antioxidant enzymes CAT and SOD, the downregulation of the transcriptional levels of oxidative stress-related genes, which triggered oxidative damage. As a result, embryonic BPF exposure affected the development of the neuromuscular junctions (NMJs) by reducing the number of axon branches and synaptic buttons, decreasing the number of peristaltic contractions, and reducing larval locomotion. In conclusion, our results demonstrate that embryonic BPF exposure disrupts neural stem cell proliferation, causing neurodevelopmental toxicity and abnormal larval behavior.
Collapse
Affiliation(s)
- Binquan Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Li
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology of Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Głód P, Smoleniec J, Marynowicz W, Gogola-Mruk J, Ptak A. The Ovary as a Target Organ for New Generation Bisphenols Toxicity. TOXICS 2025; 13:164. [PMID: 40137491 PMCID: PMC11946734 DOI: 10.3390/toxics13030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Bisphenols (BPs) are a group of organic compounds used extensively in plastics, coatings, and epoxy resins; they have been of concern recently due to their endocrine-disrupting effects. Among these, bisphenol A (BPA) is the most studied. Regulatory measures, such as the ban on BPA use in baby bottles by the European Union and its restricted use in thermal paper, reflect the growing awareness of the health risks of BPA. To mitigate these risks, analogs such as bisphenol S (BPS), bisphenol F (BPF), and others (BPAF, BPAP, BPB, BPP, BPZ) have been developed as alternatives. Despite their intended safety, these analogs have been detected in environmental media, including indoor dust and thermal receipt paper, as well as in human biological samples. Studies report their presence in urine at levels comparable to BPA, with BPS and BPF found in 78% and 55% of samples, respectively. In addition, BPs have been found in human follicular fluid (FF) at concentrations that could exert some paracrine effects on ovarian function and reproductive health. With the increased global production of BPs, occupational exposure and environmental contamination also increase. This review summarizes what is currently known about the effects of BPs on the ovary and the mechanisms by which PBs exert ovarian toxicity, with a particular focus on oogenesis, folliculogenesis, and steroidogenesis. Further, this review emphasizes their influence on reproductive functions and the need for further biosafety evaluations.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Joanna Smoleniec
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| |
Collapse
|
5
|
Li B, Huo S, Du J, Zhang X, Zhang J, Song M, Li Y. Effect of bisphenol F on reproductive function in F1 generation male mice and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125546. [PMID: 39710178 DOI: 10.1016/j.envpol.2024.125546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Bisphenol F (BPF) is an environmental endocrine disruptor capable of crossing the placental barrier and affecting the growth and development of offspring. Despite its potential impact, systematic research about effects of BPF on the reproductive function of male offspring remains limited. In this study, pregnant female mice were exposed to BPF at doses of 40, 400, and 4000 μg/kg during gestation and lactation, respectively, to evaluate its impact on testicular damage, testosterone levels, and spermatogenesis of male offspring (F1 generation), and further explore the mechanisms using transcriptomics. First, the study demonstrated that BPF induces testicular damage in F1 generation mice, leading to decreased testosterone levels and sperm quality. Second, transcriptomic analysis revealed that BPF affected spermatogenesis in F1 generation mice by disrupting retinol metabolism. Third, transcriptomic analysis revealed that BPF reduce the capacity for testosterone synthesis in F1 generation mice by diverting the testosterone precursor dehydroepiandrosterone (DHEA) towards the synthesis of 16α-hydroxydehydroepiandrosterone rather than testosterone. Finally, it was confirmed that BPF hinder cholesterol transport to mitochondria by inhibiting the cAMP signaling pathway, thereby impacting testosterone synthesis. In summary, the results of this study suggest that gestational exposure to BPF can lead to reproductive dysfunction in F1 generation male mice.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Qin H, Xu R, Qiao L, Zhai X, Guo P, Li C, Han B. Preparation and evaluation of Fe 3O 4@C@NiCo-LDH@CDs composites for magnetic solid-phase extraction of trace endocrine disruptors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6877-6887. [PMID: 39268779 DOI: 10.1039/d4ay00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The widespread use of endocrine disruptors (EDPs) has certain potential hazards to organisms and environments, and it is particularly important to develop effective pretreatment methods before detection of EDPs in complex samples. In this work, a novel magnetic nanocomposite decorated with layered double hydroxides (LDHs) and carbon dots (CDs) was designed and prepared for magnetic solid-phase extraction (MSPE) of EDPs (bisphenol S, bisphenol F, bisphenol A, bisphenol AF, diethylstilbestrol and 4-cumylphenol) combined with high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared composites were characterized by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the adsorption mechanism towards these EDPs might be mainly based on hydrogen bonds and π-π conjugation. Under the optimized conditions, the proposed method showed limits of detection within 0.05-0.50 μg L-1 and limits of quantitation within 0.2-2.0 μg L-1, and good linearity (R2 ≥ 0.9975) was presented in the range of 0.2-200 μg L-1. Finally, the Fe3O4@C@NiCo-LDH@CDs composite-based MSPE-HPLC-UV method was applied for enrichment and determination of EDPs in water, milk, and tea beverage samples with recoveries in the range of 81.2-119.8% and relative standard deviations below 9.7%.
Collapse
Affiliation(s)
- Honglin Qin
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| | - Ruozhu Xu
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| | - Lizhen Qiao
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Xupeng Zhai
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Peixin Guo
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Chen Li
- Huajin Aramco Petrochemical Company Limited, Panjin 124211, China
| | - Bingyan Han
- School of Chemical Engineering, University of Technology, Panjin 124221, China.
| |
Collapse
|
8
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
9
|
Wang Q, Tong Y, Wu Y, Li S, Bai H, Zhou Q. β-Cyclodextrin functionalized magnetic polyamine-amine dendrimers for high enrichment and effective analysis of trace bisphenolic pollutants in beverages. CHEMOSPHERE 2023; 328:138537. [PMID: 37011821 DOI: 10.1016/j.chemosphere.2023.138537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Bisphenols (BPs) are typical endocrine disruptors, which can cause great effects on environmental, organisms and human health. In this study, β-Cyclodextrin (β-CD) functionalized polyamidoamine dendrimers-modified Fe3O4 nanomaterials (MNPs@PAMAM (G3.0)@β-CD) were facilely synthesized. It exhibited good adsorption capacities for BPs, which was utilized to construct a sensitive tool in combination with high performance liquid chromatography for monitoring BPs such as bisphenol A (BPA), tetrabromobisphenol A (TBBPA), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) in beverage samples. The factors affecting the enrichment were examined such as generation of adsorbent, dosage of adsorbent, type and volume of eluting solvent, elution time and pH value of sample solution. The optimal parameters for enrichment was as follows: dosage of adsorbent, 60 mg; adsorption time, 50min; sample pH, pH7; elutent, 9 mL mixture of methanol and acetone(1:1); elution time, 6min; sample volume, 60 mL. The experimental results demonstrated that the adsorption conformed to pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The results showed the maximum adsorption capacities of BPS, TBBPA, BPA, BPAF and BPAP were 131.80 μgg-1, 139.84 μgg-1, 157.08 μgg-1, 142.11 μgg-1 and 134.23 μgg-1, respectively. Under optimal conditions, BPS had good linear relationship over range from of 0.5-300 μgL-1, and the linear ranges of BPA, TBBPA, BPAF and BPAP ranged from 0.1 to 300 μgL-1. The limits of detection (S/N = 3) for BPs were good in range of 0.016-0.039 μgL-1. The spiked recoveries of target bisphenols (BPs) in beverages were approving over range from 92.3% to 99.2%. The established method possessed merits of easy to operate, good sensitivity, rapidness as well as environmental friendliness, and which earned great application potential for the enrichment and detection of trace BPs in practical samples.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
10
|
Panagopoulos P, Mavrogianni D, Christodoulaki C, Drakaki E, Chrelias G, Panagiotopoulos D, Potiris A, Drakakis P, Stavros S. Effects of endocrine disrupting compounds on female fertility. Best Pract Res Clin Obstet Gynaecol 2023:102347. [PMID: 37244786 DOI: 10.1016/j.bpobgyn.2023.102347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023]
Abstract
Endocrine Disrupting Compounds or Chemicals (EDCs) constitute an extensive and varied group of mostly non-natural chemicals that have the ability to imitate any aspect of hormone action, perturbing many physiological functions in humans and animals. As for female fertility, several EDCs are associated with adverse effects in the regulation of steroidogenesis, higher miscarriage rates as well as lower fertilization and embryo implantation rates and some of them are considered to decrease the number of high-quality embryos in assisted reproductive technology (ART) pregnancy. The most common EDCs are pesticides, hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and especially phthalates and bisphenols which are used in thousands of products as plasticizers. Among all, Bisphenol A (BPA) is one of the most permeating and well-studied EDCs. BPA's action resembles that of estradiol affecting negatively the female reproductive system in various ways. This review summarizes the most recent literature on the impact of EDCs in female fertility.
Collapse
Affiliation(s)
- Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Despina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece.
| | | | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Georgios Chrelias
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Dimitrios Panagiotopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece; First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| |
Collapse
|
11
|
Zhang N, Zhao Y, Zhai L, Bai Y, Jia L. Urinary bisphenol A and S are associated with diminished ovarian reserve in women from an infertility clinic in Northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114867. [PMID: 37027940 DOI: 10.1016/j.ecoenv.2023.114867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) has been demonstrated to cause ovarian toxicity including disruption of steroidogenesis and inhibition of follicle growth. Still, human evidence is lacking on its analogs such as bisphenol F (BPF) and bisphenol S (BPS). In this study, we aimed to investigate the associations between exposure to BPA, BPF, and BPS with ovarian reserve in women of childbearing age. We recruited 111 women from an infertility clinic in Shenyang, North China between September 2020 and February 2021. Anti-müllerian hormone (AMH), follicle-stimulating hormone (FSH), and estradiol (E2) were measured as indicators of ovarian reserve. Urinary BPA, BPF, and BPS concentrations were quantified by ultra-high-performance liquid chromatography-triple quadruple mass spectrometry (UHPLC-MS/MS). Linear and logistic regression models were applied to assess the associations between urinary BPA, BPF, and BPS levels and indicators of ovarian reserve and DOR, respectively. Restricted cubic spline (RCS) models were further utilized to explore potential non-linear associations. Our results showed that urinary BPS concentrations were negatively associated with AMH (β = - 0.287, 95 %CI: - 0.505, - 0.070, P = 0.010) and this inverse relationship was further confirmed in the RCS model. In addition, higher levels of BPA and BPS exposure were associated with increased DOR risk (BPA: OR = 7.112, 95 %CI: 1.247, 40.588, P = 0.027; BPS: OR = 6.851, 95 %CI: 1.241, 37.818, P = 0.027). No significant associations of BPF exposure with ovarian reserve. Our findings implied that higher BPA and BPS exposure may be related to decreased ovarian reserve.
Collapse
Affiliation(s)
- Ningxin Zhang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Yannan Zhao
- The Center of Reproductive Medicine Clinical Research, Shenyang Women's and Children's Hospital, PR China
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|
12
|
Tian T, Hao Y, Wang Y, Xu X, Long X, Yan L, Zhao Y, Qiao J. Mixed and single effects of endocrine disrupting chemicals in follicular fluid on likelihood of diminished ovarian reserve: A case-control study. CHEMOSPHERE 2023; 330:138727. [PMID: 37086983 DOI: 10.1016/j.chemosphere.2023.138727] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are a group of the most widely spread pollutants. Their impacts on reproductive health have become public concerns. Diminished ovarian reserve (DOR) is a disorder of ovarian function. Associations between EDC and DOR have been inconsistent. Very little research investigated the joint effects of multiple EDCs. Here, we performed a case-control study among 64 DOR women and 86 controls. Twenty-one EDC chemicals were assessed in follicular fluid, including parabens, phenols, phthalates and poly-fluoroalkyl substances. Both mixed and single effects of EDCs on DOR were evaluated and validated with a Bayesian kernel machine and logistic regressions. We found that the likelihood of DOR significantly increased with rising levels of the 21-EDC mixture, with an odds ratio (OR) and 95% confidence interval (CI) of 2.12 (1.17-3.83) for the 75th percentile compared to its median level. The overall effect was higher than effects of each subgroup. BP4, MECPP, and PFHxA were driving the association to the mixture, and their single effects were validated, with individual ORs of 8.25 (95%CI:3.45-12.21), 1.92 (95%CI:1.02-4.09), and 1.84 (95%CI:1.08-3.86), respectively. In conclusion, we provided new pollutant markers for DOR and emphasized the importance of the effects of EDC mixtures on female reproductive health.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yongxiu Hao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinery Studies Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Žalmanová T, Hošková K, Prokešová Š, Nevoral J, Ješeta M, Benc M, Yi YJ, Moravec J, Močáryová B, Martínková S, Fontana J, Elkalaf M, Trnka J, Žáková J, Petr J. The bisphenol S contamination level observed in human follicular fluid affects the development of porcine oocytes. Front Cell Dev Biol 2023; 11:1145182. [PMID: 37091980 PMCID: PMC10115966 DOI: 10.3389/fcell.2023.1145182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.
Collapse
Affiliation(s)
- Tereza Žalmanová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- *Correspondence: Tereza Žalmanová,
| | - Kristýna Hošková
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| | - Šárka Prokešová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Michal Benc
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University of Nitra, Nitra, Slovakia
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon, Republic of Korea
| | - Jiří Moravec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Beáta Močáryová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Josef Fontana
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jaroslav Petr
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| |
Collapse
|
14
|
Levine L, Hall JE. Does the environment affect menopause? A review of the effects of endocrine disrupting chemicals on menopause. Climacteric 2023; 26:206-215. [PMID: 37011670 DOI: 10.1080/13697137.2023.2173570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Endocrine disrupting chemicals are widely distributed in our environment. Humans are exposed to these compounds not only through their occupations, but also through dietary consumption and exposure to contaminated water, personal care products and textiles. Chemicals that are persistent in the body and in our environment include dioxins and polychlorinated biphenyls. Non-persistent chemicals including bisphenol A, phthalates and parabens are equally as important because they are ubiquitous in our environment. Heavy metals, including lead and cadmium, can also have endocrine disrupting properties. Although difficult to study due to their variety of sources of exposures and mechanisms of action, these chemicals have been associated with early menopause, increased frequency of vasomotor symptoms, altered steroid hormone levels and markers of diminished ovarian reserve. Understanding the impacts of these exposures is important given the potential for epigenetic modification, which can alter gene function and result in multi-generational effects. This review summarizes findings in humans and animals or cell-based models from the past decade of research. Continued research is needed to assess the effects of mixtures of chemicals, chronic exposures and new compounds that are continuously being developed as replacements for toxic chemicals that are being phased out.
Collapse
Affiliation(s)
- L Levine
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Duan Y, Xu Z, Liu Z. A multi-site recognition molecularly imprinted solid-phase microextraction fiber for selective enrichment of three cross-class environmental endocrine disruptors. J Mater Chem B 2023; 11:1020-1028. [PMID: 36637004 DOI: 10.1039/d2tb02156k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecularly imprinted solid-phase microextraction fibers with multi-site recognition were prepared for the simultaneous enrichment of three cross-class environmental endocrine disruptors (EEDs) in environmental water. The surface morphology of the multi-site recognition molecularly imprinted fibers was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and surface area and pore size analyzer. Under optimal extraction conditions, the molecularly imprinted fibers showed higher extraction capacity to bisphenol F, diethyl phthalate, and methyl paraben than non-imprinted polymer fibers and commercial fibers. Compared with commercial solid-phase microextraction fibers, the multi-site recognition molecularly imprinted fibers showed superior extraction performance at different concentrations of analytes. The selectivity study confirmed that the multi-site recognition molecularly imprinted solid-phase microextraction fibers were highly selective not only for specific template molecules but also for bisphenols, parabens, and phthalates. Furthermore, the method achieved a limit of detection of 0.003-0.02 μg L-1 for the three cross-class EEDs in environmental water samples with recoveries ranging from 75.76% to 112.69% and relative standard deviations below 11.46%. Thus, the novel MIP fibers with multi-site recognition prepared in this work have provided a promising approach in the field of specific adsorption and a strategy for the simultaneous and sensitive monitoring of multiple cross-class trace EEDs.
Collapse
Affiliation(s)
- Yunli Duan
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Fenclová T, Chemek M, Havránková J, Kolinko Y, Sudová V, Moravec J, Navrátilová J, Klein P, Králíčková M, Nevoral J. Effect of Bisphenol S on testicular tissue after low-dose lactation exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120114. [PMID: 36096261 DOI: 10.1016/j.envpol.2022.120114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure to endocrine disruptors such as bisphenols, can lead to and be the explanation for idiopathic infertility. In our study, we assessed the effect of exposure to bisphenol S (BPS) via breast milk on the testicular tissue health of adult male mice. Lactating dams were exposed to BPS through drinking water (0.216 ng g bw/day and 21.6 ng g bw/day) from post-natal day 0-15. Although there was no significant difference in testicular histopathology between the control and experimental groups, we observed an increase in the number of tight and gap junctions in the blood-testis barrier (BTB) of adult mice after lactation BPS exposure. Moreover, there was an increase in oxidative stress markers in adult testicular tissue of mice exposed via breast milk. Our lactation model indicates that breast milk is a route of exposure to an endocrine disruptor that can be responsible for idiopathic male infertility through the damage of the BTB and weakening of oxidative stress resistance in adulthood.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Vendula Sudová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Jiří Moravec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Jana Navrátilová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, Pilsen, 30166, Czech Republic.
| |
Collapse
|
17
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
18
|
Ding ZM, Chen YW, Ahmad MJ, Wang YS, Yang SJ, Duan ZQ, Liu M, Yang CX, Liang AX, Hua GH, Huo LJ. Bisphenol F exposure affects mouse oocyte in vitro maturation through inducing oxidative stress and DNA damage. ENVIRONMENTAL TOXICOLOGY 2022; 37:1413-1422. [PMID: 35218298 DOI: 10.1002/tox.23494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is progressively used to manufacture various consumer products. Despite the established reproductive toxicity of BPF, the underlying mechanisms remain to elucidate. This in-vitro study deep in sighted the BPF toxicity on mouse oocyte meiotic maturation and quality. After treating oocytes with BPF (300 μM), the oocyte meiotic progression was blocked, accentuated by a reduced rate in the first polar body extrusion (PBE). Next, we illustrated that BPF induced α-tubulin hyper-acetylation disrupted the spindle assembly and chromosome alignment. Concurrently, BPF resulted in severe oxidative stress and DNA damage, which triggered the early apoptosis in mouse oocytes. Further, altered epigenetic modifications following BPF exposure were proved by increased H3K27me3 levels. Concerning the toxic effects on spindle structure, oxidative stress, and DNA damage in mouse oocytes, BPF toxicity was less severe to oocyte maturation and spindle structure than BPA and induced low oxidative stress. However, compared with BPA, oocytes treated with BPF were more prone to DNA damage, indicating not less intense or even more severe toxic effects of BPF than BPA on some aspects of oocytes maturation. In brief, the present study established that like wise to BPA, BPF could inhibit meiotic maturation and reduce oocyte quality, suggesting it is not a safe substitute for BPA.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Liu Y, Tang W, Ao J, Zhang J, Feng L. Transcriptomics integrated with metabolomics reveals the effect of Bisphenol F (BPF) exposure on intestinal inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151644. [PMID: 34774955 DOI: 10.1016/j.scitotenv.2021.151644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
As a viable alternative to Bisphenol A (BPA), Bisphenol F (BPF) has been detected in humans at comparable concentrations and detection frequencies. Emerging evidence reveals that BPF induces intestinal toxicity. However, less information is available concerning BPF and its potential effects on intestinal inflammation, which has been associated with numerous disorders. The results from the present study showed that BPF exposure triggered lipopolysaccharide (LPS)-induced explosion of pro-inflammatory cytokines interleukin-17A (IL-17A), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) and impairment of the intestinal epithelial barrier by downregulating the expression of tight junction proteins Zonula Occludens-1 (ZO-1) and Claudin-1 (CLDN1) in normal colonic epithelial cells (NCM460). A multi-omics analysis integrating the transcriptomics with metabolomics revealed an altered transcripts and metabolites profile following BPF exposure. Correlation analysis indicated that RAS Guanyl Releasing Protein 2 (RASGRP2) and Phospholipase A2 Group IVE (PLA2G4E) were positively associated with the increased serotonin which was positively associated with the stimulated IFN-γ in BPF-treated NCM460 cells. Pyrogallol, pyridoxine, and N-acetylputrescine were positively associated with IL-17A levels. Collectively, the integrative analyses demonstrated an orchestrated coordination between the inflammatory response, transcriptomic, and metabolomics changes. Data presented herein provide evidence for the possible roles of BPF in the pathogenesis of intestinal inflammation. These results illustrate the advantages of using integrative analyses of high throughput datasets for characterizing the effects and mechanisms of toxicants.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weifeng Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ao
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
20
|
Fenclová T, Řimnáčová H, Chemek M, Havránková J, Klein P, Králíčková M, Nevoral J. Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility. Front Physiol 2022; 13:725442. [PMID: 35283775 PMCID: PMC8908107 DOI: 10.3389/fphys.2022.725442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Collapse
Affiliation(s)
- Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Tereza Fenclová,
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Marouane Chemek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
21
|
Pei XY, Ren HY, Liu GS, Cao GL, Xie GJ, Xing DF, Ren NQ, Liu BF. Non-radical mechanism and toxicity analysis of β-cyclodextrin functionalized biochar catalyzing the degradation of bisphenol A and its analogs by peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127254. [PMID: 34583154 DOI: 10.1016/j.jhazmat.2021.127254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Bisphenols (BPs) are distributed in worldwide as typical environmental hormones, which potentially harm the ecological environment and human health. In this study, four BPs, i.e., bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, were used as prototypes to identify the intrinsic differences in degradation mechanisms correlated with the molecular structures in peroxydisulfate (PDS)-based advanced oxidation processes (AOPs). Electron transfer was the main way of modified biochar to trigger the heterogenous catalysis of PDS, which can cause the degradation of BPs. Phenolic hydroxyl groups on bisphenol pollutants were considered as possible active sites, and the existence of substituents was the main reason for the differentiation in the degradation efficiency of various bisphenols. Results of ecotoxicity prediction showed that most intermediates produced by the degradation of BPs in the β-SB/PDS system, which was dominated by the electron transfer pathway, had a lower toxicity than the parent molecules, while the toxicity of several ring cleavage intermediates was higher. This study presents a simple modification scheme for the conversion of biochar into functional catalysts and provides insights into the mechanism of heterogeneous catalytic degradation mediated by modified biochar as well as the degradation differences of bisphenol pollutants and their potential ecotoxicity.
Collapse
Affiliation(s)
- Xuan-Yuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guo-Shuai Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Kolinko Y, Malečková A, Kochová P, Grajciarová M, Blassová T, Kural T, Trailin A, Červenková L, Havránková J, Vištejnová L, Tonarová P, Moulisová V, Jiřík M, Zavaďáková A, Tichánek F, Liška V, Králíčková M, Witter K, Tonar Z. Using virtual microscopy for the development of sampling strategies in quantitative histology and design-based stereology. Anat Histol Embryol 2021; 51:3-22. [PMID: 34806204 DOI: 10.1111/ahe.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 02/03/2023]
Abstract
Only a fraction of specimens under study are usually selected for quantification in histology. Multilevel sampling or tissue probes, slides and fields of view (FOVs) in the regions of interest (ROIs) are required. In general, all parts of the organs under study should be given the same probability to be taken into account; that is, the sampling should be unbiased on all levels. The objective of our study was to provide an overview of the use of virtual microscopy in the context of developing sampling strategies of FOVs for stereological quantification. We elaborated this idea on 18 examples from multiple fields of histology, including quantification of extracellular matrix and muscle tissue, quantification of organ and tumour microvessels and tumour-infiltrating lymphocytes, assessing osseointegration of bone implants, healing of intestine anastomoses and osteochondral defects, counting brain neurons, counting nuclei in vitro cell cultures and others. We provided practical implications for the most common situations, such as exhaustive sampling of ROIs, sampling ROIs of different sizes, sampling the same ROIs for multiple histological methods, sampling more ROIs with variable intensities or using various objectives, multistage sampling and virtual sampling. Recommendations were provided for pilot studies on systematic uniform random sampling of FOVs as a part of optimizing the efficiency of histological quantification to prevent over- or undersampling. We critically discussed the pros and cons of using virtual sections for sampling FOVs from whole scanned sections. Our review demonstrated that whole slide scans of histological sections facilitate the design of sampling strategies for quantitative histology.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Anna Malečková
- Faculty of Applied Sciences, European Centre of Excellence NTIS, University of West Bohemia, Pilsen, Czech Republic
| | - Petra Kochová
- Faculty of Applied Sciences, European Centre of Excellence NTIS, University of West Bohemia, Pilsen, Czech Republic
| | - Martina Grajciarová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Tereza Blassová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Tomáš Kural
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Andriy Trailin
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Lenka Červenková
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Lucie Vištejnová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Pavla Tonarová
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Vladimíra Moulisová
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Miroslav Jiřík
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic.,Faculty of Applied Sciences, European Centre of Excellence NTIS, University of West Bohemia, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Filip Tichánek
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Václav Liška
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Kirsti Witter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zbyněk Tonar
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| |
Collapse
|
23
|
Tuzimski T, Szubartowski S. Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H 2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10307. [PMID: 34639606 PMCID: PMC8507810 DOI: 10.3390/ijerph181910307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
In this study, we propose a simple, cost-effective, and sensitive high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the simultaneous determination of the three bisphenols (BPs): bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE 2H2O), bisphenol F (BPF), and bisphenol E (BPE) in human urine samples. The dispersive solid phase extraction (d-SPE) coupled with solid phase extraction (SPE) procedure performed well for the analytes with recoveries in the range of 74.3-86.5% and relative standard deviations (RSD%) less than 10%. The limits of quantification (LOQs) for all investigated analytes were in the range of 11.42-22.35 ng mL-1. The method was validated at three concentration levels (1 × LOQ, 1.5 × LOQ, and 3 LOQ). During the bisphenols HPLC-FLD analysis, from 6 min a reinforcement (10 or 12) was used, therefore analytes might be identified in the small volume human urine samples. The results demonstrated clearly that the approach developed provides reliable, simple, and rapid quantification and identification of three bisphenols in a urine matrix and could be used for monitoring these analytes.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Szymon Szubartowski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
- Doctoral School of Medical University of Lublin, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland
| |
Collapse
|