1
|
Rai SN, Mishra D, Singh P, Singh MP, Vamanu E, Petre A. Biosynthesis and Bioapplications of Nanomaterials from Mushroom Products. Curr Pharm Des 2023; 29:1002-1008. [PMID: 37073145 DOI: 10.2174/1381612829666230417083133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 04/20/2023]
Abstract
The production of nanoparticles (NPs) from chemical and physical synthesis has ended due to the involvement of toxic byproducts and harsh analytical conditions. Innovation and research in nanoparticle synthesis are derived from biomaterials that have gained attention due to their novel features, such as ease of synthesis, low-cost, eco-friendly approach, and high water solubility. Nanoparticles obtained through macrofungi involve several mushroom species, i.e., Pleurotus spp., Ganoderma spp., Lentinus spp., and Agaricus bisporus. It is well-known that macrofungi possess high nutritional, antimicrobial, anti-cancerous, and immune-modulatory properties. Nanoparticle synthesis via medicinal and edible mushrooms is a striking research field, as macrofungi act as an eco-friendly biofilm that secretes essential enzymes to reduce metal ions. The mushroom-isolated nanoparticles exhibit longer shelf life, higher stability, and increased biological activities. The synthesis mechanisms are still unknown; evidence suggests that fungal flavones and reductases have a significant role. Several macrofungi have been utilized for metal synthesis (such as Ag, Au, Pt, Fe) and non-metal nanoparticles (Cd, Se, etc.). These nanoparticles have found significant applications in advancing industrial and bio-medical ventures. A complete understanding of the synthesis mechanism will help optimize the synthesis protocols and control the shape and size of nanoparticles. This review highlights various aspects of NP production via mushrooms, including its synthesis from mycelium and the fruiting body of macrofungi. Also, we discuss the applications of different technologies in NP high-scale production via mushrooms.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002, India
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania
| | - Alexandru Petre
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania
| |
Collapse
|
2
|
|
3
|
Bhardwaj K, Sharma A, Tejwan N, Bhardwaj S, Bhardwaj P, Nepovimova E, Shami A, Kalia A, Kumar A, Abd-Elsalam KA, Kuča K. Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review. J Fungi (Basel) 2020; 6:E351. [PMID: 33317038 PMCID: PMC7770583 DOI: 10.3390/jof6040351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023] Open
Abstract
Research and innovation in nanoparticles (NPs) synthesis derived from biomaterials have gained much attention due to their unique characteristics, such as low-cost, easy synthesis methods, high water solubility, and eco-friendly nature. NPs derived from macrofungi, including various mushroom species, such as Agaricus bisporus, Pleurotus spp., Lentinus spp., and Ganoderma spp. are well known to possess high nutritional, immune-modulatory, antimicrobial (antibacterial, antifungal and antiviral), antioxidant, and anticancerous properties. Fungi have intracellular metal uptake ability and maximum wall binding capacity; because of which, they have high metal tolerance and bioaccumulation ability. Primarily, two methods have been comprehended in the literature to synthesize metal NPs from macrofungi, i.e., the intracellular method, which refers to NP synthesis inside fungal cells by transportation of ions in the presence of enzymes; and the extracellular method, which refers to the treatment of fungal biomolecules aqueous filtrate with a metal precursor. Pleurotus derived metal NPs are known to inhibit the growth of numerous foodborne pathogenic bacteria and fungi. To the best of our knowledge, there is no such review article reported in the literature describing the synthesis and complete application and mechanism of NPs derived from macrofungi. Herein, we intend to summarize the progressive research on macrofungi derived NPs regarding their synthesis as well as applications in the area of antimicrobial (antibacterial & antifungal), anticancer, antioxidant, catalytic and food preservation. Additionally, the challenges associated with NPs synthesis will also be discussed.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (K.B.); (P.B.)
| | - Anirudh Sharma
- Advance School of Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (A.S.); (N.T.)
| | - Neeraj Tejwan
- Advance School of Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (A.S.); (N.T.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (K.B.); (P.B.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Ashwag Shami
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, India;
| | - Anil Kumar
- School Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center (ARC), Plant Pathology Research Institute, Giza 12619, Egypt
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
4
|
Jiang D, Li Z, Jia Q. Magnetic cucurbit[6]uril-based hypercrosslinked polymers for efficient enrichment of ubiquitin. Mikrochim Acta 2019; 186:510. [PMID: 31280386 DOI: 10.1007/s00604-019-3507-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/12/2019] [Indexed: 02/03/2023]
Abstract
The design and preparation of magnetic cucurbit[6]uril hypercrosslinked with polymers are described. The materials have a large specific surface, abundant mesopores and cavities, and display superparamagnetism. They were applied to the enrichment of ubiquitinated peptides from standard protein digests. Following desorption with 0.15% TFA, the peptides were quantified by MALDI-TOF MS. The method has a detection limit of 2 fmol·μL-1 and a mass ratio selectivity of 1:5000 as shown for ubiquitin and bovine serum albumin. The materials enable selective capture of ubiquitinated peptides from genuine samples comprising of oyster mushroom and human serum. This demonstrates their potential for the analysis of low-level ubiquitin in complex samples. Graphical abstract Schematic presentation for the synthesis of magnetic cucurbit[6]urils hypercrosslinked polymers (MagCB[6]-HCPs).
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
González-García E, Marina ML, García MC. Nanomaterials in Protein Sample Preparation. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1581216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Estefanía González-García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Owaid MN, Ibraheem IJ. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThis review distinguishes myco-nanotechnology using metallic nanoparticles (meta-NPs) synthesized from edible mushroom matter. Green chemistry approaches were attempted to myco-synthesize meta-NPs (viz., Ag-NP, Au-NP, Se-NP, CdS-NP, Fe-NP, Pa-NP, and ZnS-NP) via different routes using edible mushrooms and have been tested toward 79% biomedical and 21% industrial applications. Biomaterials were used as biofactors to form metallic NPs. In mushroom science, mycomaterials of mushrooms were used at different percentages to mycosynthesize in an ecofriendly/green way; mycomaterials such as crude extracts of basidocarp (53%), mycelial extract or free cell filtrate (28%), in crude form or in purified form such as polysaccharides at different percentages; 9% (especially glucan), proteins/enzymes (7%) and polysaccharides protein complex (3%) as new research lines. Generally, in this field of mushroom nanoparticles about 84% of mycosynthesized NPs using mushrooms are placed outside the fungal cell (extracellular) and 16% are intracellular in the mushroom hyphae. The knowledge of the performance and influence of meta-NPs in edible mushrooms has developed in the last 10 years. Generally, while
Collapse
|
7
|
Kailasa SK, Wu HF. Nanomaterial-based miniaturized extraction and preconcentration techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry for assaying biomolecules. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1191-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Kailasa SK, Cheng KH, Wu HF. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis. MATERIALS (BASEL, SWITZERLAND) 2013; 6:5763-5795. [PMID: 28788422 PMCID: PMC5452753 DOI: 10.3390/ma6125763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022]
Abstract
Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Chemistry, S. V. National Institute of Technology, Surat 395007, India.
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 806, Taiwan.
| |
Collapse
|
10
|
Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 2012; 9:20. [PMID: 22697169 PMCID: PMC3441384 DOI: 10.1186/1743-8977-9-20] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022] Open
Abstract
The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.
Collapse
Affiliation(s)
- Stephan T Stern
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
11
|
Kailasa SK, Wu HF. Functionalized quantum dots with dopamine dithiocarbamate as the matrix for the quantification of efavirenz in human plasma and as affinity probes for rapid identification of microwave tryptic digested proteins in MALDI-TOF-MS. J Proteomics 2011; 75:2924-33. [PMID: 22202183 DOI: 10.1016/j.jprot.2011.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/01/2023]
Abstract
Functionalized quantum dots with dopamine dithiocarbamate (QDs-DDTC) were utilized for the first time as an efficient material for the quantification of efavirenz in human plasma of HIV infected patients and rapid identification of microwave tryptic digest proteins (cytochrome c, lysozyme and BSA) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The synthesized QDs-DDTC was characterized by using spectroscopic (UV-visible, FT-IR and (1)H NMR) and microscopic (SEM and TEM) techniques. Functionalized QDs-DDTC exhibited a high desorption/ionization efficiency for the rapid quantification of small molecules (efavirenz, tobramycin and aspartame) at low-mass region. QDs-DDTC has well ability to trap target species, and capable to transfer laser energy for efficient desorption/ionization of analytes with background-free detection. The use of QDs-DDTC as a matrix provided good linearity for the quantification of small molecules (R(2)=~0.9983), with good reproducibility (RSD<10%), in the analysis of efavirenz in the plasma of HIV infected patients by the standard addition method. We also demonstrated that the use of functionalized QDs-DDTC as affinity probes for the rapid identification of microwave tryptic digested proteins (cytochrome c, lysozyme and BSA) by MALDI-TOF-MS. QDs-DDTC-based MALDI-TOF-MS approach provides simplicity, rapidity, accuracy, and precision for the determination of efavirenz in human plasma of HIV infected patients and rapid identification of microwave tryptic digested proteins. This new material presents a marked advance in the development of matrix-free mass spectrometric methods for the rapid and precise quantitative determination of a variety of molecules. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | | |
Collapse
|