1
|
Ray R, Rakesh A, Singh S, Madhyastha H, Mani NK. Hair and Nail-On-Chip for Bioinspired Microfluidic Device Fabrication and Biomarker Detection. Crit Rev Anal Chem 2023; 55:434-460. [PMID: 38133962 DOI: 10.1080/10408347.2023.2291825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.
Collapse
Affiliation(s)
- Rohitraj Ray
- Department of Bioengineering (BE), Indian Institute of Science Bangalore, Bengaluru, Karnataka, India
| | - Amith Rakesh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sheetal Singh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
2
|
Li Y, Luo Z, Zhang C, Sun R, Zhou C, Sun C. Entropy driven circuit as an emerging molecular tool for biological sensing: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Visual detection of high-risk HPV16 and HPV18 based on loop-mediated isothermal amplification. Talanta 2020; 217:121015. [DOI: 10.1016/j.talanta.2020.121015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022]
|
4
|
Chen X, Hong F, Cao Y, Hu F, Wu Y, Wu D, Li T, Lin J, Gan N. A microchip electrophoresis-based assay for ratiometric detection of kanamycin by R-shape probe and exonuclease-assisted signal amplification. Talanta 2018; 189:494-501. [DOI: 10.1016/j.talanta.2018.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|
5
|
Xiao MW, Bai XL, Liu YM, Yang L, Liao X. Simultaneous determination of trace Aflatoxin B 1 and Ochratoxin A by aptamer-based microchip capillary electrophoresis in food samples. J Chromatogr A 2018; 1569:222-228. [PMID: 30037541 DOI: 10.1016/j.chroma.2018.07.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023]
Abstract
An aptamer-based microchip capillary electrophoresis coupled with laser induced fluorescence (MCE-LIF) detection method for fast determination of Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) was developed. Aptamers that are specific to these two mycotoxins were first hybridized with their aptamer complementary oligonucleotides. The double strand DNA that comes in contact with mycotoxin-containing environment would be unwound into separate aptamer-mycotoxin complex and aptamer complementary single strand. Different types of oligonucleotides can be separated in MCE and detected under the aid of fluorescent dye SYBR gold in LIF detection unit. Under the optimal conditions, on-chip aptamer-mycotoxin conjugates analysis was achieved within 3 min with extremely low LODs (0.026 ng/mL for AFB1 and 0.021 ng/mL for OTA). Specificity study indicated that other major mycotoxins would not cross-react with these two aptamers, demonstrating the good selectivity of the proposed method. Quantification of trace AFB1 and OTA in real food samples was carried out and satisfactory recoveries were obtained. It is demonstrated that this method is fast, facile and specific for Simultaneous determination of trace AFB1 and OTA from foodstuffs.
Collapse
Affiliation(s)
- Meng-Wei Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China.
| | - Yi-Ming Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China; Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Li Yang
- Maccura Biotechnology Co. Ltd, 2nd Anhe Road, Hi-Tech Industrial Development Zone, Chengdu, Sichuan, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Ning R, Zhuang Q, Lin JM. Biomaterial-Based Microfluidics for Cell Culture and Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Zhou L, Gan N, Zhou Y, Li T, Cao Y, Chen Y. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Talanta 2017; 167:544-549. [PMID: 28340759 DOI: 10.1016/j.talanta.2017.02.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 11/29/2022]
Abstract
A novel label-free, universal, and high throughput aptasensor was developed based on a microchip electrophoresis (MCE) platform for automatic detection of antibiotic residues in food. Firstly, chloramphenicol (CAP) was employed as a model to be captured by its aptamer probe (Apt). Then, the partial complementary oligonucleotide of CAP's aptamer (C-DNA) was introduced into the reaction system. Because the Apt-CAP complex can't further hybrid with free C-DNA, the amount of hybrid Apt-C-DNA double strand DNA (dsDNA) was less than that without adding the target. Finally, the above mixture was introduced into the microchip electrophoresis (MCE) platform for detection, both dsDNA and Apt-CAP can be separated and produce different fluorescence signals in the MCE. In a certain concentration range, the ratio of signal between dsDNA and Apt-CAP (IdsDNA/I Apt-CAP) was proportional to the concentration of targets. Under the optimum conditions, the ratio showed a satisfactory linearity range from 0.008 to 1ng/mL of CAP with a detection limit of 0.003ng/mL. Thus, a universal MCE-based assay was developed for quantifying CAP automatically. The method was also successfully applied in the different food samples for CAP detection, which showed a good recovery (Milk: 91.1-108%, Fish: 86.1-114%) and the results were consistent with that of ELISA. This method owned many merits as follows: firstly, MCE was a high throughput screening platform and the detection time is limited to 3min for each sample. Secondly, the aptamer probes can be directly used for detection without labeling any signal tag which can facilitate the preparation procedures of probes. Thirdly, the operation was easy just by the following steps: firstly, the mixture of aptamer probes were incubated followed adding C-DNA; then measurement was performed. Moreover, the assay with MCE platform can be used to detect other targets just by changing the corresponding aptamer probe; it can even realize simultaneous detection when the targets have aptamers with different number of base pairs. Above all, it's a high- throughput and prospective method which can be applied in high throughput screening of antibiotics in food safety.
Collapse
Affiliation(s)
- Lingying Zhou
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - You Zhou
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yinji Chen
- Department of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210000, China
| |
Collapse
|
8
|
|
9
|
ZHUANG QC, NING RZ, MA Y, LIN JM. Recent Developments in Microfluidic Chip for in vitro Cell-based Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60919-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Deng Y, Yi L, Lin X, Lin L, Li H, Lin JM. A non-invasive genomic diagnostic method for bladder cancer using size-based filtration and microchip electrophoresis. Talanta 2015; 144:136-44. [DOI: 10.1016/j.talanta.2015.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/16/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022]
|
11
|
Liu Q, Lin X, Lin L, Yi L, Li H, Lin JM. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection. Analyst 2015; 140:6736-41. [DOI: 10.1039/c5an00944h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a high-throughput and automatic system by combining gene amplification with MCE for HPV16 E6/E7 mRNA screening is reported.
Collapse
Affiliation(s)
- Quanli Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
| | - Xuexia Lin
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
| | - Luyao Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Linglu Yi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
12
|
Lin X, Chen Q, Liu W, Yi L, Li H, Wang Z, Lin JM. Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis. Biosens Bioelectron 2014; 63:105-111. [PMID: 25063921 DOI: 10.1016/j.bios.2014.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/29/2014] [Accepted: 07/05/2014] [Indexed: 12/24/2022]
Abstract
A simple and rapid method for multiplex protein assay based on tunable aptamer by microchip electrophoresis has been developed. Different lengths of aptamers can modulate the electrophoretic mobility of proteins, allowing the protein molecules to be effectively separated in hydroxyethyl cellulose buffer with 1.00 mM magnesium ion. A non-specific DNA was exploited as an internal standard to achieve the quantitative assay and to reduce the interference. A fluorescence dye SYBR gold was exploited to improve the sensitivity and to suppress the interference from sample matrix. Under optimum conditions, quantitative assay of PDGF-BB (R(2)=0.9986), VEGF165 (R(2)=0.9909), and thrombin (R(2)=0.9947) were achieved with a dynamic range in the 5.00-150.0 nM and RSDs in the 5.87-16.3% range. The recoveries were varied from 83.6% to 113.1%. Finally, the proposed method was successfully applied to analyze cell secretions, and then the concentration of PDGF-BB and VEGF165 were detected from 5.15 nM to 2.03 nM, and 3.14 to 2.53 nM, respectively, indicating the established method can be used to analyze cell secretions.
Collapse
Affiliation(s)
- Xuexia Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Wu Liu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Linglu Yi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Yi L, Xu X, Lin X, Li H, Ma Y, Lin JM. High-throughput and automatic typing via human papillomavirus identification map for cervical cancer screening and prognosis. Analyst 2014; 139:3330-5. [DOI: 10.1039/c4an00329b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Detection of BCR–ABL using one step reverse transcriptase- polymerase chain reaction and microchip electrophoresis. Methods 2013; 64:250-4. [DOI: 10.1016/j.ymeth.2013.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
|