1
|
Moore AM, Bowman A, Wali SN, Weigand MR, Wagner D, Yang J, Laskin J. Quantitative Analysis of Drugs in a Mimetic Tissue Model Using Nano-DESI on a Triple Quadrupole Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39485739 DOI: 10.1021/jasms.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mass spectrometry is a powerful analytical technique used at every stage of the pharmaceutical research process. A specialized branch of this method, mass spectrometry imaging (MSI), has emerged as an important tool for determining the spatial distribution of drugs in biological samples. Despite the importance of MSI, its quantitative capabilities are still limited due to the complexity of biological samples and the lack of separation prior to analysis. This makes the simultaneous quantification and visualization of analytes challenging. Several techniques have been developed to address this challenge and enable quantitative MSI. One such approach is the mimetic tissue model, which involves the incorporation of an analyte of interest into tissue homogenates at several concentrations. A calibration curve that accounts for signal suppression by the complex biological matrix is then created by measuring the signal of the analyte in the series of tissue homogenates. Herein, we use the mimetic tissue model on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring mode to demonstrate the quantitative abilities of nanospray desorption electrospray ionization (nano-DESI) and compare these results with those obtained using atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI). For the tested compounds, our findings indicate that nano-DESI achieves lower standard deviations than AP-MALDI, resulting in superior limits of detection for the studied analytes. Additionally, we discuss the limitations of the mimetic tissue model in the quantification of certain analytes and the challenges involved with the implementation of the model.
Collapse
Affiliation(s)
- Alyssa M Moore
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Bowman
- AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Syeda Nazifa Wali
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Miranda R Weigand
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - David Wagner
- AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Junhai Yang
- AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Julia Laskin
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Baranova AA, Chistov AA, Shuvalov MV, Tyurin AP, Biryukov MV, Ivanov IA, Sadykova VS, Kurakov AV, Sergeeva AI, Korshun VA, Alferova VA. Identification of isocyclosporins by collision-induced dissociation of doubly protonated species. Talanta 2021; 225:121930. [PMID: 33592699 DOI: 10.1016/j.talanta.2020.121930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
Nonribosomal cyclopeptide cyclosporin A (CsA), produced by fungus Tolypocladium inflatum, is an extremely important immunosuppressive drug used in organ transplantations and for therapy of autoimmune diseases. Here we report for the first time production of CsA, along with related cyclosporins B and C, by Tolypocladium inflatum strains of marine origin (White Sea). Cyclosporins A-C contain an unusual amino acid, (4R)-4-((E)-2-butenyl)-4,N-dimethyl-l-threonine (MeBmt), and are prone to isomerization to non-active isocyclosporin by N→O acyl shift of valine connected to MeBmt in acidic conditions. CsA and isoCsA are not distinguishable in MS analysis of [M+H]+ ions due to rapid [CsA + H]+→[isoCsA + H]+ conversion. We found that the N→O acyl shift is completely suppressed in cyclosporine [M+2H]2+ ions, and their collision-induced dissociation (CID) can be used for rapid and unambiguous analysis of cyclosporins and isocylosporins. Fragmentation patterns of [CsA+2H]2+ and [isoCsA+2H]2+ ions were analyzed and explained. The developed approach could be useful for MS analysis of other peptides containing β-hydroxy-α-amino acids.
Collapse
Affiliation(s)
- Anna A Baranova
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow, 119121, Russia
| | - Maxim V Shuvalov
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Lomonosov Moscow State University, 1 Leninskiye Gory, 119992, Moscow, Russia
| | - Anton P Tyurin
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Mikhail V Biryukov
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Lomonosov Moscow State University, 1 Leninskiye Gory, 119992, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Vera S Sadykova
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia
| | | | - Albina I Sergeeva
- Lomonosov Moscow State University, 1 Leninskiye Gory, 119992, Moscow, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Vera A Alferova
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, Moscow, 119021, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Przykaza K, Jurak M, Wiącek A, Mroczka R. Characteristics of hybrid chitosan/phospholipid-sterol, peptide coatings on plasma activated PEEK polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111658. [DOI: 10.1016/j.msec.2020.111658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 01/24/2023]
|
4
|
Lam KHB, Le Blanc JCY, Campbell JL. Separating Isomers, Conformers, and Analogues of Cyclosporin using Differential Mobility Spectroscopy, Mass Spectrometry, and Hydrogen–Deuterium Exchange. Anal Chem 2020; 92:11053-11061. [DOI: 10.1021/acs.analchem.0c00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- K. H. Brian Lam
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | - J. Larry Campbell
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Kim M, Park JM, Yun TG, Noh JY, Kang MJ, Pyun JC. TiO 2 Nanowires from Wet-Corrosion Synthesis for Peptide Sequencing Using Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33790-33802. [PMID: 30212181 DOI: 10.1021/acsami.8b03804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample was dropped on a target plate containing synthesized TiO2 nanowire zones and UV-irradiated. Subsequently, the target plate was analyzed by laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry using the synthesized TiO2 nanowires as a solid matrix. The feasibility of peptide sequencing based on the photocatalytic reaction with the synthesized TiO2 nanowires was demonstrated using six types of peptides GHP9 (G1-H-P-Q-G2-K1-K2-K3-K4, 1006.59 Da), BPA-1(K1-S1-L-E-N-S2-Y-G1-G2-G3-K2-K3-K4, 1394.74 Da), PreS1(F1-G-A-N1-S-N2-N3-P1-D1-W-D2-F2-N4-P2-N5, 1707.68 Da), HPQ peptide-1 (G-Y-H-P-Q-R-K, 884.45 Da), HPQ peptide-2 (K-R-H-P-Q-Y-G, 884.45 Da), and HPQ peptide-3 (R-Y-H-P-Q-G-K, 884.45 Da). The identification of three different peptides with the same molecular weight was also demonstrated by using the synthesized TiO2 nanowires for their photocatalytic decomposition as well as for LDI-TOF mass spectrometry as a solid-matrix.
Collapse
Affiliation(s)
- Mira Kim
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Jong-Min Park
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST) , Seoul 02792 , Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| |
Collapse
|
6
|
Shao Y, Wang C, Apedo A, Mcconnell O. Rapid Separation of Five Cyclosporin Analogs by Supercritical Fluid Chromatography. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jasmi.2016.62004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015; 24:743-60. [PMID: 25727893 PMCID: PMC4433440 DOI: 10.1517/13543784.2015.1021919] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. AREAS COVERED The following article provides an overview of select cell-based and pharmacological therapies under early development for the treatment of TBI. These therapies seek to enhance cognitive and neurological functional recovery through neuroprotective and neurorestorative strategies. EXPERT OPINION TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Hospital, Department of Neurosurgery , Education and Research Building, Room 3096, 2799 West Grand Boulevard, Detroit, MI 48202 , USA +1 313 916 4743 ; +1 313 916 9855 ;
| | | | | | | |
Collapse
|