1
|
Excellent performance separation of trypsin by novel ternary magnetic composite adsorbent based on betaine-urea- glycerol natural deep eutectic solvent modified MnFe 2O 4-MWCNTs. Talanta 2022; 248:123566. [PMID: 35653959 DOI: 10.1016/j.talanta.2022.123566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
The effective trypsin purification methods should be established since trypsin plays a crucial role in biosome. In this work, a novel ternary magnetic composite adsorbent (MnFe2O4-MWCNTs@B-U-G) with the features of strong specific selectivity, good adsorption effect, simple and efficient separation process, no secondary pollution brought in was prepared by integrating the superior physicochemical properties of ternary based natural deep eutectic solvent, multi-walled carbon nanotubes and MnFe2O4. The property, composition and microtopography structure of MnFe2O4-MWCNTs@B-U-G were characterized in detail. Combined with magnetic solid-phase extraction, MnFe2O4-MWCNTs@B-U-G was utilized to adsorb trypsin. Response surface methodology experiment was prepared under Box-Behnken design to optimize the adsorption conditions and the results showed that the practical maximum adsorption capacity for trypsin was 1020.1 mg g-1. Besides, the adsorption isotherms, adsorption kinetics, regeneration studies and method validation studies were investigated systematically to evaluate the established adsorption separation system. Mechanism exploration proved that electrostatic interaction, hydrogen bonding interaction and chelation interaction were the dominant forces for the high-performance adsorption of trypsin. The activity of trypsin after elution had been analyzed by UV-vis spectrophotometer and CD spectrometer with three methods, which illustrated that the enzyme activity, conformation and secondary structure of trypsin did not change significantly during the adsorption-desorption process. In addition, the proposed method was successful and practical applicability to isolation trypsin from crude bovine pancreas. As a result, due to the superiority of the MnFe2O4-MWCNTs@B-U-G, the proposed method not only exhibites high-performance adsorption of trypsin, but also provides a green and sustainable potential value in the adsorption of biomacromolecule.
Collapse
|
2
|
Li WK, Zhang J, Wang S, Ma ZQ, Feng JT, Pei HW, Liu YM. Simultaneous determination of three herbicide residues in wheat flour based on the hollow fiber supported carbon dots. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Li WK, Xue YJ, Fu XY, Ma ZQ, Feng JT. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Ding YZ, Zhang YD, Shi YP. Polyaniline spinel particles with ultrahigh-performance liquid chromatography tandem mass spectrometry for rapid vitamin B 9 determination in rice. Talanta 2022; 241:123278. [PMID: 35123244 DOI: 10.1016/j.talanta.2022.123278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 01/02/2023]
Abstract
Rice is an important crop that provides energy and nutrients to humans, which undergoes the aging process, the quality decline is related to the exogenous storage conditions and the change of own enzyme activity. However, due to the complex composition of rice and serious matrix interference, the ageing identification of rice is still challenging. Hence, a novel spinel particles ZnFe2O4@PANI was designed and synthesized for adsorption and determination of vitamin B9, which can be used to distinguish rice in different years and analyze the degree of aging. The ZnFe2O4@PANI showed large specific surface area and fast mass transfer rate with good linear correlation coefficient (R2 = 0.9965), satisfactory recoveries (85.1%-99.9%) and relative standard deviations (RSD, 9.3%). Moreover, the π-π electron-donor-acceptor (EDA) and intermolecular hydrogen-bonding interactions of polyaniline coating provided selective adsorption on vitamin B9. Adsorption thermodynamics study suggested that the adsorption reactions were spontaneous, endothermic and thermodynamically favorable. Finally, ZnFe2O4@PANI was used to evaluate vitamin B9 in rice from different years, which laid a theoretical foundation for exploring the relationship between vitamin changes and the aging degree of the rice.
Collapse
Affiliation(s)
- Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Gao J, Li T, Song M, Zhao Y, Wang A. Effective dispersion of oxidized multi-walled carbon nanotubes using a water-soluble N, O-carboxymethyl chitosan via non-covalent interaction. RSC Adv 2022; 12:23754-23761. [PMID: 36090392 PMCID: PMC9394589 DOI: 10.1039/d2ra03592h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dispersible multi-walled carbon nanotubes (MWCNTs) in water have been widely applied in the nanotechnology field. This study reports a water-soluble N,O-carboxymethyl chitosan(N,O-CMCS) assisted individual dispersion of oxidized multi-walled carbon nanotubes (oMWCNTs) as a dispersant. First, the dispersing agent N,O-CMCS was successfully synthesized using the nucleophilic substitution of deacetylated chitosan with chloroacetic acid in an alkaline solution. It was further confirmed using Fourier transform infrared spectroscopy (FTIR). Second, after the treatment with the concentrated hydrochloric acid, the prepared oMWCNTs were dispersed in an aqueous solution of N,O-CMCS under ultrasonic vibrations. Finally, the dispersed aqueous solution was subjected to centrifugation to collect the supernatant of individually dispersed N,O-CMCS/oMWCNTs. In addition, transmission electron microscopy (TEM) further confirmed that the purity of oMWCNTs was improved after the acidification progress. Besides, the stability of the dispersion solution was evidenced by digital photos of oMWCNTs dispersed by N,O-CMCS before and after. Moreover, the UV-vis spectrum (the characteristic peak of dispersed oMWCNTs downshifted 13 nm) showed that the supernatant was enriched by the individual oMWCNTs. In particular, the analytical results of FTIR (the –NH2 band of N,O-CMCS downshifted 7 cm−1), resonance Raman spectroscopy (the ID/IG ratio of dispersed oMWCNTs only increased 0.14), and XRD identified the formation of a non-convalent interaction between N,O-CMCS and oMWCNTs. These findings reveal the dispersing nature of N,O-CMCS towards oMWCNTs in water media. The stability of a dispersion solution was evidenced by images of oMWCNTs-dispersed by N,O-CMCS before (b) and after (a). UV-vis further showed that individual oMWCNTs were enriched via the non-covalent interaction between oMWCNTs and N,O-CMCS.![]()
Collapse
Affiliation(s)
- Jinling Gao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tongtong Li
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Song
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuyao Zhao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Anxu Wang
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
6
|
LIN S, DING Q, ZHANG W, ZHANG L, LU Q. [Novel adsorption material for solid phase extraction in sample pretreatment of plant hormones]. Se Pu 2021; 39:1281-1290. [PMID: 34811999 PMCID: PMC9404001 DOI: 10.3724/sp.j.1123.2021.03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Plant hormones (PHs) are of significance in plant growth, as they regulate the various processes related to plant growth, development, and resistance. Sensitive and precise quantitative analysis of PHs is a bottleneck in plant science research. Currently, liquid chromatography-tandem mass spectrometry is used for the accurate and efficient detection of PHs. Sample pretreatment is an indispensable step in the chromatography-mass spectrometry analysis of PHs because it directly affects the sensitivity and accuracy of subsequent detection methods. Among various pretreatment methods for PHs, solid phase extraction (SPE) is the most widely used. Various new types of SPE, such as dispersive SPE, magnetic SPE, and solid phase microextraction, have been developed by modifying the extraction cartridge. The choice of adsorption material is the key factor in the abovementioned SPE methods, which has a decisive effect on the extraction, purification, and enrichment effects of the target substance in the sample pretreatment process. Carbon-based materials, including carbon nanotubes, graphene, carbon and nitrogen compounds, as well as organic frameworks, including metal organic frameworks and covalent organic materials, are suitable adsorption materials because of their designable structure, large specific surface area, and good stability. Molecularly imprinted polymers and supramolecular compounds show specific molecular recognition based on host-guest interactions, which can significantly improve the selectivity of sample pretreatment methods. In this paper, SPE-related technology and the abovementioned types of functionalized adsorption materials in the pretreatment of PHs prevalent in the past five years have been reviewed. The related development trends are also summarized.
Collapse
|
7
|
Rodas M, Fikarová K, Pasanen F, Horstkotte B, Maya F. Zeolitic imidazolate frameworks in analytical sample preparation. J Sep Sci 2020; 44:1203-1219. [PMID: 33369090 DOI: 10.1002/jssc.202001159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022]
Abstract
Zeolitic imidazolate frameworks are a class of metal-organic frameworks that are topologically isomorphic with zeolites. Zeolitic imidazolate frameworks are composed of tetrahedrally coordinated metal ions connected by imidazolate linkers and have a high porosity and chemical stability. Here, we summarize the progress made in the application of zeolitic imidazolate frameworks in sample preparation for analytical purposes. This review is focused on analytical methods based on liquid chromatography, gas chromatography, or capillary electrophoresis, where the use of zeolitic imidazolate frameworks has contributed to increasing the sensitivity and selectivity of the method. While bulk zeolitic imidazolate frameworks have been directly used in analytical sample preparation protocols, a variety of strategies for their magnetization or their incorporation into sorbent particles, monoliths, fibers, stir bars, or thin films, have been developed. These modifications have facilitated the handling and application of zeolitic imidazolate frameworks for a number of analytical sample treatments including magnetic solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, or thin film microextraction, among other techniques.
Collapse
Affiliation(s)
- Melisa Rodas
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| | - Kateřina Fikarová
- Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Charles University, Hradec Králové, Czech Republic
| | - Finnian Pasanen
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| | - Burkhard Horstkotte
- Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Charles University, Hradec Králové, Czech Republic
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| |
Collapse
|
8
|
|
9
|
Triazine-Based Polymeric Network-Modified Magnetic Nanoparticles (NPs) as an Efficient Sorbent to Extract 1-Naphthylacetic Acid in Fruit and Vegetable Samples. Chromatographia 2020. [DOI: 10.1007/s10337-020-03905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin as hydrophilic solid-phase extraction sorbent for specific simultaneous determination of three plant growth regulators in green bell peppers. Food Chem 2020; 311:125999. [DOI: 10.1016/j.foodchem.2019.125999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
11
|
Electrochemical behavior of plant growth stimulator 1-naphthaleneacetic acid and its voltammetric determination using boron doped diamond electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Han X, Chen J, Li Z, Qiu H. Combustion fabrication of magnetic porous carbon as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal anti-inflammatory drugs. Anal Chim Acta 2019; 1078:78-89. [DOI: 10.1016/j.aca.2019.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023]
|
15
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Application of magnetic N-doped carbon nanotubes in solid-phase extraction of trace bisphenols from fruit juices. Food Chem 2018; 269:413-418. [DOI: 10.1016/j.foodchem.2018.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 01/19/2023]
|
17
|
Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil. Anal Bioanal Chem 2018; 410:6943-6954. [DOI: 10.1007/s00216-018-1299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023]
|
18
|
Simple and Sensitive Determination of Aromatic Acids in Coconut Water by g-C3N4@SiO2 Based Solid-phase Extraction and HPLC-UV Analysis. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8041-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060959] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Li WK, Zhang HX, Shi YP. Simultaneous determination of bifenox, dichlobenil and diclofop methyl by hollow carbon nanospheres enhanced magnetic carboxylic multi-walled carbon nanotubes. Anal Chim Acta 2018; 1011:40-49. [DOI: 10.1016/j.aca.2018.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/27/2023]
|
21
|
Wei X, Wang Y, Chen J, Xu P, Zhou Y. Preparation of ionic liquid modified magnetic metal-organic frameworks composites for the solid-phase extraction of α–chymotrypsin. Talanta 2018; 182:484-491. [DOI: 10.1016/j.talanta.2018.02.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
22
|
Li WK, Zhang HX, Shi YP. Selective determination of aromatic amino acids by magnetic hydroxylated MWCNTs and MOFs based composite. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1059:27-34. [DOI: 10.1016/j.jchromb.2017.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
|