1
|
Gonçalves-Filho D, De Souza D. Trends in pulse voltammetric techniques applied to foodstuffs analysis: The food additives detection. Food Chem 2024; 454:139710. [PMID: 38815328 DOI: 10.1016/j.foodchem.2024.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Food additives are chemical compounds intentionally added during foodstuff production to control technological functions, such as pH, viscosity, stability (color, flavor, taste, and odor), homogeneity, and loss of nutritional value. These compounds are fundamental in inhibition the degradation process and prolonging the shelf life of foodstuffs. However, their inadequate employment or overconsumption can adversely affect consumers' health with the development of allergies, hematological, autoimmune, and reproductive disorders, as well as the development of some types of cancer. Thus, the development and application of simple, fast, low-cost, sensitivity, and selectivity analytical methods for identifying and quantifying food additives from various chemical classes and in different foodstuffs are fundamental to quality control and ensuring food safety. This review presents trends in the detection of food additives in foodstuffs using differential pulse voltammetry and square wave voltammetry, the main pulse voltammetric techniques, indicating the advantages, drawbacks, and applicability in food analysis. Are discussed the importance of adequate choices of working electrode materials in the improvements of analytical results, allowing reliable, accurate, and inexpensive voltammetric methods for detecting these compounds in foodstuffs samples.
Collapse
Affiliation(s)
- Danielle Gonçalves-Filho
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
2
|
Tabanlıgil Calam T, Taşkın G. Optimization of voltammetric parameters for sensitive and simultaneous determination of ferulic acid and vanillin using a glassy carbon electrode based on 2-aminonicotinic acid in the presence of surfactant media. Food Chem 2024; 436:137752. [PMID: 37862984 DOI: 10.1016/j.foodchem.2023.137752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The electrochemical sensor for simultaneous determination of ferulic acid (FA) and vanillin (VA) was prepared by electrochemical deposition of 2-aminonicotinic acid (2-ANA) on the glassy carbon (GC) electrode. The voltammetric determination of FA and VA was performed in the BR buffer solution in the presence of sodium dodecyl sulfate as a surfactant with SWV. The parameters of the SWV technique were optimized by response surface methodology experimental design. Under optimized conditions, the 2-ANA/GC modified electrode presented a linear working range of 2.8 × 10-8 M to 7.50 × 10-6 M and 7.50 × 10-6 M to 2.45 × 10-5 M for FA, 3.06 × 10-8 M to 1.27 × 10-5M for VA. The detection limit (LOD) values for FA and VA were 6.87 nM and 9.23 nM, respectively. Using the 2-ANA/GC sensor, concentrations of FA and VA in instant coffee and milk samples were determined with %recovery values between 103.40 and 97.07 and %RSD values between 0.76 and 4.40.
Collapse
Affiliation(s)
| | - Gülşen Taşkın
- Gazi University, Technical Sciences Vocational High School, Ankara, Turkey.
| |
Collapse
|
3
|
Aschemacher NA, Gegenschatz SA, Teglia CM, Siano ÁS, Gutierrez FA, Goicoechea HC. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples. Talanta 2024; 267:125246. [PMID: 37774452 DOI: 10.1016/j.talanta.2023.125246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
In this work, a novel, simple and reproducible poly(l-proline)/functionalized multi-walled carbon nanotube composite on glassy carbon electrode (poly(PRO)-MWCNTs/GCE) was developed as an electrochemical sensor for the simultaneous determination of gallic acid (GA), theophylline (TP) and caffeine (CAF) by differential pulse voltammetry (DPV). The sensing platform was optimized by experimental design and response surface methodology, using various factors affecting polymerization and detection, such as electropolymerization time and potential, and pH, respectively. As a result, the dispersion conditions were the mixing of 1.78 mg MWCNTs with 1.00 mL l-proline solution to 4.14 mg mL-1 (in SDBS 0.5%), followed by 21 min of sonication with electropolymerization by 16 cyclic scans. In addition, the final analysis was performed at a pH of 3.00 and prior accumulation at 0.350 V for 40 s. The electrochemical behavior of GA, TP and CAF on the optimized sensor was investigated. As a result, the electrode preserves and synergistically combines the properties of each modifier. This new electrochemical sensor showed superior electrocatalytic properties for the oxidation of GA, TP and CAF, which significantly improved the sensitivity of the three compounds. Under the optimized experimental conditions, the detection limits achieved by S/N were 0.03, 0.04 and 0.11 μmol L-1 for GA, TP and CAF, respectively. The analysis of real samples was successfully performed in human breast milk, tea, infusion of yerba mate, coffee, Coca-Cola zero and energy drink, showing good recoveries, ranged between 87 and 108%. The proposed sensor also showed good selectivity, repeatability and reproducibility, indicating feasibility and reliability. This is the first time that the l-proline monomer is used as a dispersant for MWCNTs and as a precursor for the in-situ polymerization of the proline polymer. Previously, the electropolymerizations were carried out with the monomer in solution rather than as an exfoliant of MWCNTs, where the polymer is electrosynthesized between MWCNTs rather than on them. In this way, the large specific surface area and strong adsorption ability of the nanomaterial are enhanced, and the ability to promote electron transfer reaction is increased, which provides enough effective reaction sites.
Collapse
Affiliation(s)
- Nicolás A Aschemacher
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Sofía A Gegenschatz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
4
|
de Amorim KP, Ribeiro GC, Caixeta-Neta A, Andrade LS. Cloud point extraction of carbendazim fungicide from strawberry samples and amperometric detection with boron doped diamond. Food Chem 2024; 430:137031. [PMID: 37542963 DOI: 10.1016/j.foodchem.2023.137031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
The cloud point extraction (Tergitol® surfactant) method was used for the first time to extract and preconcentrate the fungicide carbendazim (CBZ) from strawberry samples, while electrochemical detection (boron doped diamond electrode) in association with high performance liquid chromatography (HPLC-EC) was used for the determination of CBZ. The variables of bath temperature, ultrasonic stirring time, mass of NaCl and amount of surfactant were investigated using a 24 full factorial design. Limits of detection (LOD, S/N = 3) and quantification (LOQ) of 3.42 × 10-8 mol/L (or 6.54 µg/L) and 6.84 × 10-8 mol/L (or 13.1 µg/L), respectively, were obtained for the CPE processes, considering the value of the preconcentration factor obtained (9.12). The method was validated based on linearity, intra-day and inter-day recovery tests, accuracy and precision. The proposed method was applied to strawberry samples from local commercial establishments and different procedures for washing and sanitizing strawberry fruits were also evaluated.
Collapse
Affiliation(s)
- Kamila P de Amorim
- Institute of Chemistry, Federal University of Catalão, Catalão-GO, Brazil
| | - Gabriela C Ribeiro
- Institute of Chemistry, Federal University of Catalão, Catalão-GO, Brazil
| | | | - Leonardo S Andrade
- Institute of Chemistry, Federal University of Catalão, Catalão-GO, Brazil.
| |
Collapse
|
5
|
El Hamd MA, El-Maghrabey M, Almawash S, El-Shaheny R, Magdy G. Self-ratiometric fluorescence approach based on plant extract-assisted synthesized silver nanoparticles for the determination of vanillin. Mikrochim Acta 2023; 191:16. [PMID: 38086991 DOI: 10.1007/s00604-023-06093-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The current study designed and applied a novel self-ratiometric fluorescent nanosensor composed of green-synthesized silver nanoparticles (Ag-NPs) to determine vanillin in adult and infant foods and human plasma. A straightforward microwave-assisted approach is proposed for synthesizing Ag-NPs in less than 1 min using a reducing agent, tailed pepper seed extract. The synthesized Ag-NPs had a strong fluorescence with an intense emission band at 360 nm and a shoulder peak at 430 nm when excited at 265 nm. Upon interaction with vanillin, the fluorescence peak of Ag-NPs at 360 nm decreases in a concentration-dependent manner while being shifted to a longer wavelength, 385 nm. Meanwhile, the shoulder fluorescence peak at 430 nm is only slightly affected by vanillin addition. Thus, a new Ag-NP self-ratiometric probe was designed and validated for vanillin determination using the peak at 385 nm and the shoulder peak at 430 as two built-in reference peaks. The optimized system accurately measured vanillin with a detection limit of 9.0 ng/mL and a linear range of 0.05-8.0 μg/mL without needing pre-derivatization or high-cost instrumentation. The method successfully measured vanillin in adult and infant milk formula, biscuits, and human plasma samples with high percentage recoveries (95.3-104.6%) and excellent precision (relative SD; ≤3.85%).
Collapse
Affiliation(s)
- Mohamed A El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33511, Kafrelsheikh, Egypt
| |
Collapse
|
6
|
Ali I, Mısır M, Demir E, Dinçer İ, Locatelli M, ALOthman ZA. Nano solid phase micro membrane tip and electrochemical methods for vanillin analysis in chocolate samples. Anal Biochem 2023; 677:115268. [PMID: 37524223 DOI: 10.1016/j.ab.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
A polymer-based nanosensor and electrochemical methods were developed for the quantitative analysis of vanillin. The sample preparation was done using nano solid phase micro membrane tip extraction (NSPMMTE). A novel poly(phenylalanine)/TiO2/CPE sensor was built as the working electrode for the first time for the analysis of the vanillin substance. The electrochemical behavior and analytical performance of vanillin were examined in detail by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) techniques via the oxidation process. The optimized modules of the DPSV technique that affected the vanillin peak current and peak potential were pH, pulse amplitude, step potential, and deposition time. The electroactive surface areas of bare CPE, TiO2/CPE, and poly(phenylalanine)/TiO2/CPE electrodes were found to be 0.135 cm2, 0.155 cm2, and 0.221 cm2, respectively. The limit of detection (LOD) was 32.6 μg/L in the 0.25-15.0 mg/L working range at pH 7.0. The selectivity of the proposed DPSV method for the determination of vanillin on the modified electrode was investigated in the presence of various organic and inorganic substances, and the determination of vanillin with high recovery was achieved with less than 5% relative error. The analytical application was applied in chocolate samples and the DPSV method was found highly efficient, reproducible, and selective.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India.
| | - Murat Mısır
- Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, 40100, Kırşehir, Turkey
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - İrem Dinçer
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio ", Via dei Vestini 31, Chieti, 66100, Italy
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Prinith NS, Manjunatha JG, Albaqami MD, Mohamed Tighezza A, Sillanpää M. Electrochemical Analysis of Food additive Vanillin using Poly (Aspartic Acid) Modified Graphene and Graphite composite Paste Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202203572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nambudumada S. Prinith
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Jamballi G. Manjunatha
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Ammar Mohamed Tighezza
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering Aarhus University, Norrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
8
|
Detection of benzalkonium chloride and polyhexamethylene guanidine hydrochloride using novel organic gel-based amperometric electrode and HILIC DAD. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
10
|
Sarakhman O, Benková A, Švorc Ľ. A modern and powerful electrochemical sensing platform for purines determination: Voltammetric determination of uric acid and caffeine in biological samples on miniaturized thick-film boron-doped diamond electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Portable amperometric method for selective determination of caffeine in samples with the presence of interfering electroactive chemical species. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Kouhi I, Parvizi Fard G, Alipour E, Saadatirad A. Development of an electrochemical sensor for determination of vanillin in some food stuffs. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Iraj Kouhi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Golnaz Parvizi Fard
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Esmaeel Alipour
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Afsaneh Saadatirad
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
13
|
Jiao J, Zhou Z, Tian S, Ren Z. Facile preparation of molecular-imprinted polymers for selective extraction of theophylline molecular from aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Hareesha N, Manjunatha J, Amrutha B, Sreeharsha N, Basheeruddin Asdaq S, Anwer MK. A fast and selective electrochemical detection of vanillin in food samples on the surface of poly(glutamic acid) functionalized multiwalled carbon nanotubes and graphite composite paste sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Allahverdiyeva S, Yunusoğlu O, Yardım Y, Şentürk Z. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal Chim Acta 2021; 1159:338418. [PMID: 33867032 PMCID: PMC7971419 DOI: 10.1016/j.aca.2021.338418] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Favipiravir, a promising antiviral agent, is undergoing clinical trials for the potential treatment of the novel coronavirus disease 2019 (COVID-19). This is the first report for the electrochemical activity of favipiravir and its electroanalytical sensing. For this purpose, the effect of cationic surfactant, CTAB was demonstrated on the enhanced accumulation of favipiravir at the surface of cathodically pretreated boron-doped diamond (CPT-BDD) electrode. At first, the electrochemical properties of favipiravir were investigated in the surfactant-free solutions by the means of cyclic voltammetry. The compound presented a single oxidation step which is irreversible and adsorption controlled. A systematic study of various operational conditions, such as electrode pretreatment, pH of the supporting electrolyte, concentration of CTAB, accumulation variables, and instrumental parameters on the adsorptive stripping response, was examined using square-wave voltammetry. An oxidation signal at around +1.21 V in Britton-Robinson buffer at pH 8.0 containing 6 × 10-4 M CTAB allowed to the adsorptive stripping voltammetric determination of favipiravir (after 60 s accumulation step at open-circuit condition). The process could be used in the concentration range with two linear segments of 0.01-0.1 μg mL-1 (6.4 × 10-8-6.4 × 10-7 M) and 0.1-20.0 μg mL-1 (6.4 × 10-7-1.3 × 10-4 M). The limit of detection values were found to be 0.0028 μg mL-1 (1.8 × 10-8 M), and 0.023 μg mL-1 (1.5 × 10-7 M) for the first and second segments of calibration graph, respectively. The feasibility of developed methodology was tested to the analysis of the commercial tablet formulations and model human urine samples.
Collapse
Affiliation(s)
- Shabnam Allahverdiyeva
- Van Yuzuncu Yil University, Faculty of Science, Department of Biochemistry, 65080, Van, Turkey
| | - Oruc Yunusoğlu
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Pharmacology, 65080, Van, Turkey
| | - Yavuz Yardım
- Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| | - Zühre Şentürk
- Van Yuzuncu Yil University, Faculty of Science, Department of Analytical Chemistry, 65080, Van, Turkey,Corresponding author
| |
Collapse
|
16
|
Elbashir AA, Elgack Elgorashe RE, Alnajjar AO, Aboul‐Enein HY. Capillary electrophoresis method for simultaneous analysis of caffeine, vanillin and ethyl vanillin in beverages. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ahmed O. Alnajjar
- Department of Chemistry, College of Science King Faisal University Al‐Ahsa Saudi Arabia
| | - Hassan Y. Aboul‐Enein
- Pharmaceutical and Medicinal Chemistry Department Division of Pharmaceutical and Drug Industries Research Division, National Research Centre Dokki Cairo Egypt
| |
Collapse
|
17
|
Tigari G, Manjunatha JG, D'Souza ES, Sreeharsha N. Surfactant and Polymer Composite Modified Electrode for the Sensitive Determination of Vanillin in Food Sample. ChemistrySelect 2021. [DOI: 10.1002/slct.202004370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Girish Tigari
- Department ofChemistry, FMKMC College, Madikeri MangaloreUniversityConstituent College Karnataka India
| | - J. G. Manjunatha
- Department ofChemistry, FMKMC College, Madikeri MangaloreUniversityConstituent College Karnataka India
| | - Edwin S. D'Souza
- Department ofChemistry, FMKMC College, Madikeri MangaloreUniversityConstituent College Karnataka India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences College of Clinical Pharmacy, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Pharmaceutics Vidya Siri College of Pharmacy, Off Sarjapura Road Bengaluru 560 035, Karnataka India
| |
Collapse
|
18
|
Hoshyar SA, Barzani HA, Yardım Y, Şentürk Z. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Morawska K, Ciesielski W, Smarzewska S. First electroanalytical studies of methoxyfenozide and its interactions with dsDNA. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Applicability of Cork as Novel Modifiers to Develop Electrochemical Sensor for Caffeine Determination. MATERIALS 2020; 14:ma14010037. [PMID: 33374209 PMCID: PMC7794975 DOI: 10.3390/ma14010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5-1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.
Collapse
|
21
|
Mielech-Łukasiewicz K, Leoniuk M. Voltammetric determination of natamycin using a cathodically pretreated boron-doped diamond electrode in the presence of sodium dodecyl sulfate. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Tabanlıgil Calam T. Voltammetric determination and electrochemical behavior of vanillin based on 1H-1,2,4-triazole-3-thiol polymer film modified gold electrode. Food Chem 2020; 328:127098. [PMID: 32470775 DOI: 10.1016/j.foodchem.2020.127098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/08/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Poly(1H-1,2,4-triazole-3-thiol) (poly(T3T)) conductive film was coated successfully on the gold electrode (Au). The electrochemical behavior of vanillin (VAN) was studied on the 1H-1,2,4-triazole-3-thiol-Au (T3T-Au) electrode. The determination of VAN was performed on the T3T-Au electrode using a differential pulse voltammetry (DPV) technique. In order to detect the concentration of VAN, suitable supporting electrolyte solution and pH value were determined. At pH 3 in HClO4 solution, the anodic peak current of VAN obtained with the T3T-Au electrode is 4.3 times greater than the bare Au electrode. The response oxidation peak current and concentration of VAN showed a good linear relationship in the range of 0.1-11.3 µM. The limit of detection was found as 0.04 µM. Besides, the reproducibility, repeatability, stability, and interference measurements were also assayed. This sensor was applied successfully for the detection of VAN in synthetic samples and various food samples.
Collapse
|
23
|
Sarakhman O, Švorc Ľ. A Review on Recent Advances in the Applications of Boron-Doped Diamond Electrochemical Sensors in Food Analysis. Crit Rev Anal Chem 2020; 52:791-813. [PMID: 33028086 DOI: 10.1080/10408347.2020.1828028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The usage of boron-doped diamond (BDD) material has found to be very attractive in modern electroanalytical methods and received massive consideration as perspective electrochemical sensor due to its outstanding (electro)chemical properties. These generally known facilities include large potential window, low background currents, ability to withstand extreme potentials and strong tendency to resist fouling compared to conventional carbon-based electrodes. As evidence of superiority of this material, couple of reviews describing the overview of various applications of BDD electrodes in the field of analytical and material chemistry has been reported in scientific literature during last decade. However, herein proposed review predominantly focuses on the most recent developments (from 2009 to 2020) dealing with the application of BDD as an advanced and environmental-friendly sensor platform in food analysis. The main method characteristics of analysis of various organic food components with different chemical properties, including additives, flavor and aroma components, phenolic compounds, flavonoids and pesticides in food matrices are described in more details. The importance of BDD surface termination, presence of sp2 content and boron doping level on electrochemical sensing is discussed. Apart from this, a special attention is paid to the evaluation of main analytical characteristics of the BDD electrochemical sensor in single- and multi-analyte detection mode in food analysis. The recent achievements in the utilizing of BDD electrodes in amperometric detection coupled to flow injection analysis, batch injection analysis, and high-performance liquid chromatography are also commented. Moreover, actual trends in sample preparation techniques prior to electrochemical sensing in food analysis are referred.
Collapse
Affiliation(s)
- Olha Sarakhman
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Masibi KK, Fayemi OE, Adekunle AS, Sherif EM, Ebenso EE. Electrochemical Determination of Caffeine Using Bimetallic Au−Ag Nanoparticles Obtained from Low‐cost Green Synthesis. ELECTROANAL 2020. [DOI: 10.1002/elan.202060198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kgotla K. Masibi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | | | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University P.O. Box 800 Al-Riyadh 11421 SaudiArabia
- Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry National Research Centre El-Buhouth St. Dokki 12622 Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Department of Chemistry, College of Science, Engineering and Technology University of South Africa, Florida Roodepoort South Africa 1710
| |
Collapse
|
25
|
Teófilo KR, Arantes LC, Marinho PA, Macedo AA, Pimentel DM, Rocha DP, de Oliveira AC, Richter EM, Munoz RA, dos Santos WT. Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Nogueira FDS, Araujo FM, De Faria LV, Lisboa TP, Azevedo GC, Dornellas RM, Matos MAC, Matos RC. Simultaneous determination of strobilurin fungicides residues in bean samples by HPLC-UV-AD using boron-doped diamond electrode. Talanta 2020; 216:120957. [PMID: 32456891 DOI: 10.1016/j.talanta.2020.120957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023]
Abstract
The aim of this paper was the development of a method for the determination of six strobilurins (fungicides) using boron-doped diamond (BDD) electrode with amperometric detection (AD) homemade coupled to high performance liquid chromatography (HPLC/UV-Vis). HPLC separation of fungicides was performed in a C18 reverse phase column using both UV and AD detectors at 200 mn and 1.9 V, respectively. The linear range for each strobilurin was from 5 to 15 mg L-1 and the correlation coefficients for all the compounds were above 0.997. Both detectors presented adequate detectability (LOD ranging from 1.33 to 1.57 μg kg-1) respecting the limits pre-established by regulatory agencies. The method was validated presenting good values of recovery and accuracy. In the spiked samples the recoveries ranged from 61.6% (trifloxystrobin) to 98.8% (azoxystrobin) for UV and 62.3% (trifloxystrobin) to 95.2% (azoxystrobin) for AD. In blanks spikes the recovery varied from 77.8% (picoxystrobin) to 88.4% (kresoxim-methyl) for UV and 76.7% (picoxystrobin) to 87.1% (dimoxystrobin) for AD. The method showed good precision (RSD < 10%). The results obtained by amperometric and UV detections were statistically comparable. Seven bean samples were analyzed to detect fungicide residues.
Collapse
Affiliation(s)
- Fernanda da Silva Nogueira
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Fausto Moreira Araujo
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Lucas Vinícius De Faria
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Gustavo Chevitarese Azevedo
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Rafael Machado Dornellas
- Departamento de Química, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Maria Auxiliadora Costa Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Renato Camargo Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| |
Collapse
|
27
|
Facile Fabrication of CeO2/Electrochemically Reduced Graphene Oxide Nanocomposites for Vanillin Detection in Commercial Food Products. NANOMATERIALS 2020; 10:nano10071356. [PMID: 32664495 PMCID: PMC7408163 DOI: 10.3390/nano10071356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
In this paper, CeO2 nanoparticles were synthesized by the solvothermal method and dispersed uniformly in graphene oxide (GO) aqueous solution by ultrasonication. The homogeneous CeO2-GO dispersion was coated on the surface of a glassy carbon electrode (GCE), and the CeO2/electrochemically reduced graphene oxide modified electrode (CeO2/ERGO/GCE) was obtained by potentiostatic reduction. The results of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that CeO2 nanocrystals were uniformly coated by gossamer like ERGO nanosheets. The electrochemical behavior of vanillin on the CeO2/ERGO/GCE was studied by cyclic voltammetry (CV). It was found that the CeO2/ERGO/GCE has high electrocatalytic activity and good electrochemical performance for vanillin oxidation. Using the second derivative linear sweep voltammetry (SDLSV), the CeO2/ERGO/GCE provides a wide range of 0.04–20 µM and 20 µM–100 µM for vanillin detection, and the detection limit is estimated to be 0.01 µM after 120 s accumulation. This method has been successfully applied to the vanillin detection in some commercial foods.
Collapse
|
28
|
Voltammetric sensing of dinitrophenolic herbicide dinoterb on cathodically pretreated boron-doped diamond electrode in the presence of cationic surfactant. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Aydın Yiğit, Yardım Y, Şentürk Z. Square-Wave Adsorptive Stripping Voltammetric Determination of Hesperidin Using a Boron-Doped Diamond Electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820050184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104575] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Lourencao BC, Brocenschi RF, Medeiros RA, Fatibello‐Filho O, Rocha‐Filho RC. Analytical Applications of Electrochemically Pretreated Boron‐Doped Diamond Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruna C. Lourencao
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Ricardo F. Brocenschi
- Centro de Estudos do Mar Universidade Federal do Paraná (UFPR) C.P. 61 83255-976 Pontal do Paraná – PR Brazil
| | - Roberta A. Medeiros
- Departamento de Química Universidade Estadual de Londrina (UEL) C.P. 10.011 86057-970 Londrina – PR Brazil
| | - Orlando Fatibello‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Romeu C. Rocha‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| |
Collapse
|
32
|
A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 2020; 208:120388. [DOI: 10.1016/j.talanta.2019.120388] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/09/2023]
|
33
|
Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Sivrikaya S. A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:488-495. [DOI: 10.1080/19440049.2020.1711972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sezen Sivrikaya
- Faculty of Technology, Polymer Engineering Department, Duzce University, Duzce, Turkey
| |
Collapse
|
35
|
Rapid electroanalytical procedure for sesamol determination in real samples. Food Chem 2019; 309:125789. [PMID: 31704073 DOI: 10.1016/j.foodchem.2019.125789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
In this study, the development of an electroanalytical assay based on square wave voltammetry technique for determining sesamol (Ses) in sesame oil samples is described. The influence of various factors such as pH of the supporting electrolyte, its composition, and SW (square wave) parameters was studied. Linearity of the peak current depended on the concentration of Ses in the range from 3.0 to 140.0 μmol L-1 with a limit of detection of 0.71 μmol L-1. Furthermore, the cyclic voltammetric behavior of Ses and the effects of scan rate and pH on the peak current and peak potential of Ses were determined. Moreover, the electrode process was found to be diffusion-controlled. The proposed methodology was successfully applied for determining Ses in commercial sesame oil samples. The obtained results were in good agreement with the results from the HPLC-UV reference method.
Collapse
|
36
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
37
|
Aslışen B, Koçak ÇC, Koçak S. Electrochemical Determination of Sesamol in Foods by Square Wave Voltammetry at a Boron-Doped Diamond Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1650752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Burak Aslışen
- Department of Chemistry, Science and Art Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - Çağrı C. Koçak
- Bergama Vocational School, Dokuz Eylul University, Izmir, Turkey
| | - Süleyman Koçak
- Department of Chemistry, Science and Art Faculty, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
38
|
Calam TT, Uzun D. Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐Amino‐1,2,4‐triazole‐5‐thiol. ELECTROANAL 2019. [DOI: 10.1002/elan.201900328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tuğba Tabanlıgil Calam
- Gazi UniversityTechnical Sciences Vocational High School, Department of Chemical Technology 06500 Ankara Turkey
| | - Demet Uzun
- Gazi University, Science FacultyDepartment of Chemistry 06500 Ankara Turkey
| |
Collapse
|
39
|
Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 2019; 1083:101-109. [PMID: 31493800 DOI: 10.1016/j.aca.2019.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
In this work, a facile ratiometric electrochemical aptasensor was developed towards sensitive and selective detection of vanillin, based on Ketjen black/ferrocene dual-doped zeolite-like MOFs (Fc-KB/ZIF-8) and electrodeposited gold nanoparticles (AuNPs) coupling with DNA aptamer. Fc-KB/ZIF-8 composites were prepared via one-pot solvothermal reaction and drop-coated on glassy carbon electrode (GCE) surface to form Fc-KB/ZIF-8@GCE. AuNPs were in-situ electro-deposited on the modified GCE. 5'-SH terminated aptamer of vanillin was combined with AuNPs via Au-S coupling to form aptamer-AuNPs/Fc-KB/ZIF-8@GCE as a new sensing platform. Under optimal conditions, electrochemical (square wave voltammetry) curves of this sensing platform were measured in electrolyte solutions containing vanillin. With increase of vanillin concentration (Cvan), vanillin had an increased peak current intensity (Ivan, as response signal). Fc doped into ZIF-8 had slight changes in its peak current intensity (IFc, as reference signal). There is a well plotting linear relationship between Ivan/IFc and the logarithm of Cvan ranging from 10 nM to 0.2 mM, with a low limit of detection of 3 nM. The aptamer-AuNPs/Fc-KB/ZIF-8@GCE was applied as a ratiometric electrochemical aptasensor of vanillin. This aptasensor had sensitive and selective electrochemical signal responses on vanillin, over potential interferents. This aptasensor enabled vanillin detection in real food samples, showing high detection performance. Experimental results testified that this aptasensor had high reliability and practicability for vanillin determination in real samples.
Collapse
|
40
|
Sousa CP, Ribeiro FWP, Oliveira TMBF, Salazar‐Banda GR, de Lima‐Neto P, Morais S, Correia AN. Electroanalysis of Pharmaceuticals on Boron‐Doped Diamond Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201801742] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Camila P. Sousa
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Francisco W. P. Ribeiro
- Instituto de Formação de EducadoresUniversidade Federal do Cariri Rua Olegário Emídio de Araújo Centro 63260-000 Brejo Santo, CE Brazil
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e TecnologiaUniversidade Federal do Cariri Av. Tenente Raimundo Rocha, Cidade Universitária 63048-080 Juazeiro do Norte, CE Brazil
| | - Giancarlo R. Salazar‐Banda
- Instituto de Tecnologia e Pesquisa/ Programa de Pós-Graduação em Engenharia de ProcessosUniversidade Tiradentes 49032-490 Aracaju, SE Brazil
| | - Pedro de Lima‐Neto
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Simone Morais
- REQUIMTE-LAQVInstituto Superior de Engenharia do Porto Instituto Politécnico do Porto R. Dr. António Bernardino de Almeida 431
| | - Adriana N. Correia
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| |
Collapse
|
41
|
|
42
|
Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Anal Chim Acta 2018; 1034:176-183. [DOI: 10.1016/j.aca.2018.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
|
43
|
Švorc Ľ, Haššo M, Sarakhman O, Kianičková K, Stanković DM, Otřísal P. A progressive electrochemical sensor for food quality control: Reliable determination of theobromine in chocolate products using a miniaturized boron-doped diamond electrode. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Voltammetric determination of ethylvanillin and methylvanillin sum at carbon paste electrode modified by sodium dodecyl sulfate in selected foodstuffs. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Rudnicki K, Landová P, Wrońska M, Domagała S, Čáslavský J, Vávrová M, Skrzypek S. Quantitative determination of the veterinary drug monensin in horse feed samples by square wave voltammetry (SWV) and direct infusion electrospray ionization tandem mass spectrometry (DI–ESI–MS/MS). Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Yiğit A, Alpar N, Yardım Y, Çelebi M, Şentürk Z. A Graphene-based Electrochemical Sensor for the Individual, Selective and Simultaneous Determination of Total Chlorogenic Acids, Vanillin and Caffeine in Food and Beverage Samples. ELECTROANAL 2018. [DOI: 10.1002/elan.201800229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aydın Yiğit
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Nurcan Alpar
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Yavuz Yardım
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Metin Çelebi
- Van Yüzüncü Yıl University, Faculty of Science; Department of Inorganic Chemistry; 65080 Van Turkey
| | - Zühre Şentürk
- Van Yüzüncü Yıl University, Faculty of Science; Department of Analytical Chemistry; 65080 Van Turkey
| |
Collapse
|
48
|
Redivo L, Stredanský M, De Angelis E, Navarini L, Resmini M, Švorc Ĺ. Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172146. [PMID: 29892400 PMCID: PMC5990824 DOI: 10.1098/rsos.172146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Food quality control is a mandatory task in the food industry and relies on the availability of simple, cost-effective and stable sensing platforms. In the present work, the applicability of bare glassy carbon electrodes for routine analysis of food samples was evaluated as a valid alternative to chromatographic techniques, using caffeine as test analyte. A number of experimental parameters were optimized and a differential pulse voltammetry was applied for quantification experiments. The detection limit was found to be 2 × 10-5 M (3σ criterion) and repeatability was evaluated by the relative standard deviation of 4.5%. The influence of sugars, and compounds structurally related to caffeine on the current response of caffeine was evaluated and found to have no significant influence on the electrode performance. The suitability of bare carbon electrodes for routine analysis was successfully demonstrated by quantifying caffeine content in seven commercially available drinks and the results were validated using a standard ultra-high performance liquid chromatography method. This work demonstrates that bare glassy carbon electrodes are a simple, reliable and cost-effective platform for rapid analysis of targets such as caffeine in commercial products and they represent therefore a competitive alternative to the existing analytical methodologies for routine food analysis.
Collapse
Affiliation(s)
- Luca Redivo
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | - Marina Resmini
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ĺubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava 812 37, Slovak Republic
| |
Collapse
|
49
|
Li Y, Li H, Li M, Li C, Sun D, Yang B. Porous boron-doped diamond electrode for detection of dopamine and pyridoxine in human serum. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Bezerra CF, Camilo CJ, do Nascimento Silva MK, de Freitas TS, Ribeiro-Filho J, Coutinho HDM. Vanillin selectively modulates the action of antibiotics against resistant bacteria. Microb Pathog 2017; 113:265-268. [PMID: 29107747 DOI: 10.1016/j.micpath.2017.10.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
The treatment of infections caused by microorganisms that are resistant to antibiotics represent one of the main challenges of medicine today, especially due to the inefficacy of long-term drug therapy. In the search for new alternatives to treat these infections, many researchers have been looking for new substances derived from natural products to replace, or be used in combination with conventional antibiotics. Vanillin is a phenolic compound whose antimicrobial activity has been used in the elimination of pathogens present in fruits and vegetables. However, its antibacterial and modulating properties remain to be characterized. Therefore, this work aimed to evaluate the antibacterial activity and analyze the modulator activity of vanillin in association with conventional antibiotics. The antimicrobial activity of vanillin was evaluated using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) Standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and multi-resistant strains of Escherichia coli 06, Staphylococcus aureus 10, Pseudomonas aeruginosa 24 were used in this study. The antibiotic modulating effect was analyzed by combining vanillin with Norfloxacin, Imipenem, Gentamicin, Erythromycin and Tetracycline against the following multiresistant bacteria strains: Escherichia coli 06, Staphylococcus aureus 10 and Pseudomonas aeruginosa 24. Data were analyzed using the ANOVA test of two tracks followed by the post hoc Bonferroni test. Vanillin presented CIMs ≥1024μg/mL against all tested strains demonstrating that it did not present significant antibacterial activity. However, modulated the activity of gentamicin and imipenem against S. aureus and E. coli, causing a synergistic effect, but did not affect the activity of norfloxacin, tetracycline and erythromycin against these same microorganisms. A synergistic effect was also obtained from the association of vanillin with norfloxacin against P. aeruginosa. On the other hand, against this strain the association of vanillin with tetracycline and erythromycin caused antagonism, although the activity of gentamicin and imipenem was not affected. In conclusion, vanillin selectively modulated the activity of antibiotics against multiresistant bacteria and as such, might be useful in the development of new therapies against resistant microorganism.
Collapse
Affiliation(s)
- Camila Fonseca Bezerra
- Laboratório de Microbiologia e Biologia Molecular- LMBM, Universidade Regional do Cariri- URCA, Crato, Ceará, Brazil.
| | - Cicera Janaine Camilo
- Laboratório de Microbiologia e Biologia Molecular- LMBM, Universidade Regional do Cariri- URCA, Crato, Ceará, Brazil
| | - Maria Karollyna do Nascimento Silva
- Laboratório de Microbiologia e Biologia Molecular- LMBM, Universidade Regional do Cariri- URCA, Crato, Ceará, Brazil; Centro Universitário Dr. Leão Sampaio - Unileão - Juazeiro do Norte, Ceará, Brazil
| | - Thiago Sampaio de Freitas
- Laboratório de Microbiologia e Biologia Molecular- LMBM, Universidade Regional do Cariri- URCA, Crato, Ceará, Brazil
| | - Jaime Ribeiro-Filho
- Centro Universitário Dr. Leão Sampaio - Unileão - Juazeiro do Norte, Ceará, Brazil
| | | |
Collapse
|