1
|
Sharifi H, Elter M, Seehafer K, Smarsly E, Hemmateenejad B, Bunz UHF. Paper and nylon based optical tongues with poly(p-phenyleneethynylene)-fluorophores efficiently discriminate nitroarene-based explosives and pollutants. Talanta 2024; 276:126222. [PMID: 38728805 DOI: 10.1016/j.talanta.2024.126222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Discrimination of nitroarenes with hydrophobic dyes in a polar (H2O) environment is difficult but possible via a lab-on-chip, with polymeric dyes immobilized on paper or nylon membranes. Here arrays of 12 hydrophobic poly(p-phenyleneethynylene)s (PPEs), are assembled into a chemical tongue to detect/discriminate nitroarenes in water. The changes in fluorescence image of the PPEs when interacting with solutions of the nitroarenes were recorded and converted into color difference maps, followed by cluster analysis methods. The variable selection method for both paper and nylon devices selects a handful of PPEs at different pH-values that discriminate nitroaromatics reliably. The paper-based chemical tongue could accurately discriminate all studied nitroarenes whereas the nylon-based devices represented distinguishable optical signature for picric acid and 2,4,6-trinitrotoluene (TNT) with high accuracy.
Collapse
Affiliation(s)
- Hoda Sharifi
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran; Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Maximilian Elter
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Emanuel Smarsly
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | | | - Uwe H F Bunz
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Bombaywala S, Bajaj A, Dafale NA. Meta-analysis of wastewater microbiome for antibiotic resistance profiling. J Microbiol Methods 2024; 223:106953. [PMID: 38754482 DOI: 10.1016/j.mimet.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The microbial composition and stress molecules are main drivers influencing the development and spread of antibiotic resistance bacteria (ARBs) and genes (ARGs) in the environment. A reliable and rapid method for identifying associations between microbiome composition and resistome remains challenging. In the present study, secondary metagenome data of sewage and hospital wastewaters were assessed for differential taxonomic and ARG profiling. Subsequently, Random Forest (RF)-based ML models were used to predict ARG profiles based on taxonomic composition and model validation on hospital wastewaters. Total ARG abundance was significantly higher in hospital wastewaters (15 ppm) than sewage (5 ppm), while the resistance towards methicillin, carbapenem, and fluoroquinolone were predominant. Although, Pseudomonas constituted major fraction, Streptomyces, Enterobacter, and Klebsiella were characteristic of hospital wastewaters. Prediction modeling showed that the relative abundance of pathogenic genera Escherichia, Vibrio, and Pseudomonas contributed most towards variations in total ARG count. Moreover, the model was able to identify host-specific patterns for contributing taxa and related ARGs with >90% accuracy in predicting the ARG subtype abundance. More than >80% accuracy was obtained for hospital wastewaters, demonstrating that the model can be validly extrapolated to different types of wastewater systems. Findings from the study showed that the ML approach could identify ARG profile based on bacterial composition including 16S rDNA amplicon data, and can serve as a viable alternative to metagenomic binning for identification of potential hosts of ARGs. Overall, this study demonstrates the promising application of ML techniques for predicting the spread of ARGs and provides guidance for early warning of ARBs emergence.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Alimohammadi M, Sharifi H, Tashkhourian J, Shamsipur M, Hemmateenejad B. A paper-based chemical tongue based on the charge transfer complex of ninhydrin with an array of metal-doped carbon dots discriminates natural amino acids and several of their enantiomers. LAB ON A CHIP 2023; 23:3837-3849. [PMID: 37501627 DOI: 10.1039/d3lc00424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Simultaneous detection of multiple amino acids (AAs) instead of individual AAs is inherently worthwhile for improving diagnostic accuracy in clinical applications. Here, a facile and reliable colorimetric microfluidic paper-based analytical device (μPAD) using carbon dots doped with transition metals (Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) has been provided to detect and discriminate 20 natural amino acids. To make the colourless metal-doped carbon dots suitable for colorimetric assays, they were mixed with ninhydrin to form a charge transfer complex. This optical tongue system, which was constructed by dropping mixtures of ninhydrin with a series of metal-doped carbon dots on a paper substrate in an array format, represented obvious but different colorimetric signatures for every examined amino acid. Since bovine serum albumin was used as a chiral selector reagent for synthesizing the CDs, the sensor device represented excellent selectivity to identify enantiomeric species of AAs. This is the first optical array device that can simultaneously discriminate AAs and several of their enantiomers. We employed various statistical and chemometric methods to analyze the digital data library collected by Image J software, including principal component analysis (PCA), linear discriminant analysis (LDA), and hierarchical cluster analysis (HCA). Twenty AAs could be well distinguished at various concentrations (10.00, 5.00, 2.50, and 1.25 mM). The colorimetric patterns were highly repeatable and were characteristic of individual AAs. Besides qualitative analysis, the designed μPAD-based optical tongue represented quantitative analysis ability, e.g., for lysine in the concentration ranges of 0.005-20.0 mM with a detection limit of 1.0 × 10-6 M and for arginine in the concentration range of 0.12-20.00 mM with a detection limit of 80.0 × 10-6 M. In addition, the binary, ternary, and quaternary mixtures of AAs could also be well recognized with this sensor.
Collapse
Affiliation(s)
| | - Hoda Sharifi
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran.
| | | | | | - Bahram Hemmateenejad
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
O'Connell KC, Lawless NK, Stewart BM, Landers JP. Dielectric heating of highly corrosive and oxidizing reagents on a hybrid glass microfiber-polymer centrifugal microfluidic device. LAB ON A CHIP 2022; 22:2549-2565. [PMID: 35674228 DOI: 10.1039/d2lc00221c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many assays necessitate the use of highly concentrated acids, powerful oxidizing agents, or a combination of the two. Although microfluidic devices offer vast potential for rapid analytical interrogation at the point-of-need (PON), they cannot escape the fundamental requirement for reagent compatibility. Worse, many innovative protocols have been developed that would represent a significant improvement to current field-forward practices within their respective disciplines, but adoption falters due to chemical incompatibility with challenging reagents. Polymeric centrifugal microfluidic devices meet many of the needs for accommodating complex chemical or biochemical protocols in a multiplexed and automatable format. Yet, they also struggle to accommodate highly reactive chemical components long term. In this work, we report on a simple and inexpensive reagent storage strategy that bypasses the typical complexity involved with integration of liquid reagents on microfluidic devices. Moreover, we demonstrate microdevice compatibility and operation after six months of corrosive reagent storage as well as post dielectric heating. This new strategy allows for storage of multiple highly corrosive and oxidative reagents simultaneously, enhancing the possibilities for multistep assay integration at the PON for a diverse array of applications. Successful detection after one week of corrosive reagent storage of an illicit drug and neurotransmitter metabolite, for forensic and clinical applications, is demonstrated. Furthermore, environmental sample preparation via microwave-assisted wet acid digestion is performed on-disc and integrated with downstream detection. Quantitative detection of a heavy metal in soil is achieved by way of on-disc calibration and found to be accurate within 2.4% compared to a gold standard reference (ICP-OES).
Collapse
Affiliation(s)
- Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Nicola K Lawless
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Cognitive Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Brennan M Stewart
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
5
|
Ding C, Ren Y, Liu X, Zeng J, Yu X, Zhou D, Li Y. Detection and discrimination of sulfur dioxide using a colorimetric sensor array. RSC Adv 2022; 12:25852-25859. [PMID: 36199613 PMCID: PMC9469182 DOI: 10.1039/d2ra04251g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Discrimination and detection of sulfur dioxide residues in foods using a simple colorimetric array have been achieved. The difference maps before and after the reaction showed that the specific color fingerprint was related to the amount of sulfur dioxide. The results of principal component analysis (PCA), hierarchical clustering analysis (HCA) and linear discriminant analysis (LDA) demonstrated that the as-fabricated colorimetric sensor array have good performance for the discrimination of sulfur dioxide and other interferents, as well as different concentrations of sulfur dioxide. Moreover, the array has been successfully applied to determine the concentration of sulfur dioxide residues in real samples and revealed good accuracy, precision and repeatability. In this work, a colorimetric sensor array based on six specific color reactions was developed and used for the determination of sulfur dioxide content. The qualitative and quantitative analysis of sulfur dioxide residues in real samples was achieved.![]()
Collapse
Affiliation(s)
- Chaoqiang Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Yan Ren
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Xinyang Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Jingjing Zeng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Xinping Yu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Daxiang Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| | - Yanjie Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
- Engineering Technology Research Center for the Development and Utilization of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, P. R. China
| |
Collapse
|
6
|
Aparna A, Sreehari H, Chandran A, Anjali KP, Alex AM, Anuvinda P, Gouthami GB, Pillai NP, Parvathy N, Sadanandan S, Saritha A. Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta 2021; 239:123134. [PMID: 34922101 DOI: 10.1016/j.talanta.2021.123134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Nano biotechnology, when coupled with green chemistry, can revolutionize human life because of the vast opportunities and benefits it can offer to the quality of human life. Luminescent metal nanoclusters (NCs) have recently developed as a potential research area with applications in different areas like medical, imaging, sensing etc. Recently these new candidates have proved to be beneficial in the food supply chain enabling controlled release of nutrients, pesticides and as nanosensors for the detection of contaminants and play roles in healthy food storage and maintaining food quality. An assortment of nanomaterials has been employed for these applications and reviews have been published on the use of nanotechnology in agriculture. Ligand-protected metal nanoclusters are a distinctive class of small organic-inorganic nanostructures that garnered immense research interest in recent years owing to their stability at specific "magic size" compositions along with tunable properties that make them promising candidates for a wide range of nanotechnology-based applications. This review tries to consolidate the recent developments in the area of ligand-protected nanoclusters in connection with the detection of pesticides, food contaminants, heavy metal ions and plant growth monitoring for healthy agricultural practices. Its antimicrobial activity to manage the microbial contamination is highlighted. The review also throws light on the various perspectives by which food production and allied areas will be transformed in future.
Collapse
Affiliation(s)
- Asok Aparna
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - H Sreehari
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - K P Anjali
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Ansu Mary Alex
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - P Anuvinda
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - G B Gouthami
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Neeraja P Pillai
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - N Parvathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India.
| |
Collapse
|
7
|
Zhang Y, Zhang D, Zhao Y, Yuan X, Liu H, Wang J, Sun B. An ionic liquid-assisted quantum dot-grafted covalent organic framework-based multi-dimensional sensing array for discrimination of insecticides using principal component analysis and clustered heat map. Mikrochim Acta 2021; 188:298. [PMID: 34401933 DOI: 10.1007/s00604-021-04936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023]
Abstract
A robust multi-dimensional sensing array based on VBimBF4B/MAA-anchored quantum dot (QD)-grafted covalent organic frameworks (COFs) [(V-M)/QD-grafted COFs] was established via one-pot strategy. The multi-dimensional sensing array has the outstanding advantages of physicochemical and thermal stability, large specific surface area, and regular pore structures. The assistance of ionic liquid VBimBF4B enhanced the transduction efficiency, and the synergistic effect of COFs enhanced detection efficiency. The improved multi-dimensional sensing array by COFs and ionic liquid VBimBF4B served to identify seven insecticides by non-specific interactions via hydrogen bonding, and the differences in the kinetics of the binding to the insecticides resulted in variation of the three-output channel (fluorescence, phosphorescence, and light scattering) signals, thus generating a distinct optical fingerprint. The unique fingerprint patterns of seven kinds of common insecticides at 200 μg L-1 were successfully discriminated using principal component analysis and clustered heat map analysis. The multi-dimensional sensing array showed a response to seven insecticides based on three spectral channels over the range of 0.001-0.4 μg mL-1 with a limit of detection of 1.08-18.68 μg L-1. The spiked recovery of tap water was 79.86-134.22%, with RSD ranging from 0.89-14.9%. This study broadens the applications of sensing arrays technology and provides a promising building block for insecticide determination.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Xinyue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| |
Collapse
|
8
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
9
|
Wang D, Liu D, Duan H, Xu Y, Zhou Z, Wang P. Catechol Dyes-Tyrosinase System for Colorimetric Determination and Discrimination of Dithiocarbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9252-9259. [PMID: 32806111 DOI: 10.1021/acs.jafc.0c03352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A convenient and straightforward method, which is based on catechol dyes and tyrosinase, for colorimetric determination and discrimination of dithiocarbamate pesticides (DTCs) has been fabricated. Three catechol dyes, including pyrocatechol violet (PV), pyrogallol red (PR), and bromopyrogallol red (BPR), were chosen as both substrates and indicators in this method. Tyrosinase can facilitate oxidation of the catechol dyes, altering color and absorbance spectra of the dyes. DTCs can alter the absorbance spectra of the catechol dyes-tyrosinase system due to their inhibitory effects on tyrosinase. As a result, the detection limit of the PV-tyrosinase system on ziram was determined to be 4.5 μg L-1. By implementing PV-tyrosinase, PR-tyrosinase, and BPR-tyrosinase, the colorimetric array successfully distinguished six DTCs (thiram, ziram, diram, ferbam, metiram, and mancozeb) at 5.0 μM using principal component analysis (PCA). The system can also determine ziram and distinguish DTCs in real samples. Furthermore, a smartphone can be used as a detector in this system to improve its real-world applications.
Collapse
Affiliation(s)
- Dongwei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yitian Xu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Kaur R, Rana S, Lalit K, Singh P, Kaur K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens Bioelectron 2020; 167:112486. [PMID: 32841783 DOI: 10.1016/j.bios.2020.112486] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023]
Abstract
A quick electrochemical sensing tool by utilizing novel bioelectrode based on redox active protein hemoglobin (Hb) has been offered here for the determination of methylparathion (MP). The bioelectrode has been designed by immobilizing Hb on electrochemically reduced graphene oxide-chitosan (ERGO-CS/Hb/FTO) based biocompatible coatings. Fourier transform-infrared analyses (FTIR), field emission scanning electron microscopy (FESEM), UV-visible and electrochemical characterization reveal the successful grafting of ERGO-CS/Hb/FTO. A detailed impedimetric analysis shows low charge transfer resistance (RCT) and solution resistance (Rs) for the fabricated biosensor, thus pointing towards improved electrochemical performance and sensitivity. In-depth elucidation of redox analysis has been presented in terms of surface concentration of redox moiety (2.92 × 10-9 mol cm-2) and heterogeneous electron transfer rate constant (0.0032 s-1) which indicate enhanced surface coverage and better charge transfer properties of the proposed electrochemical biosensor. The sensor is equipped with a low limit of detection of 79.77 nM and a high sensitivity of 45.77 Acm-2 μM-1 with excellent reproducibility. The modified biosensor also offered its credibility towards detection of MP in vegetable samples with recovery (%) ranging from 94% to 101%. The designed biosensor hereby, evolves as a promising approach for the recognition of MP.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Kanika Lalit
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Parkash Singh
- Department of Mechanical Engineering, Malout Institute of Management and Informational Technology, Malout, 152107, India
| | - Khushwinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
11
|
Electronic Tongues for Inedible Media. SENSORS 2019; 19:s19235113. [PMID: 31766686 PMCID: PMC6928786 DOI: 10.3390/s19235113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
“Electronic tongues”, “taste sensors”, and similar devices (further named as “multisensor systems”, or MSS) have been studied and applied mostly for the analysis of edible analytes. This is not surprising, since the MSS development was sometimes inspired by the mainstream idea that they could substitute human gustatory tests. However, the basic principle behind multisensor systems—a combination of an array of cross-sensitive chemical sensors for liquid analysis and a machine learning engine for multivariate data processing—does not imply any limitations on the application of such systems for the analysis of inedible media. This review deals with the numerous MSS applications for the analysis of inedible analytes, among other things, for agricultural and medical purposes.
Collapse
|
12
|
3D-Printed Graphene Electrodes Applied in an Impedimetric Electronic Tongue for Soil Analysis. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The increasing world population leads to the growing demand for food production without expanding cultivation areas. In this sense, precision agriculture optimizes the production and input usage by employing sensors to locally monitor plant nutrient within agricultural fields. Here, we have used an electronic tongue sensing device based on impedance spectroscopy to recognize distinct soil samples (sandy and clayey) enriched with macronutrients. The e-tongue setup consisted of an array of four sensing units formed by layer-by-layer (LbL) films deposited onto 3D-printed graphene-based interdigitated electrodes (IDEs). The IDEs were fabricated in 20 min using the fused deposition modeling process and commercial polylactic acid-based graphene filaments. The e-tongue comprised one bare and three IDEs functionalized with poly(diallyldimethylammonium chloride) solution/copper phthalocyanine-3,4′,4′′,4′′′-tetrasulfonic acid tetrasodium salt (PDDA/CuTsPc), PDDA/montmorillonite clay (MMt-K), and PDDA/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) LbL films. Control samples of sandy and clayey soils were enriched with different concentrations of nitrogen (N), phosphorus (P), and potassium (K) macronutrients. Sixteen soil samples were simply diluted in water and measured using electrical impedance spectroscopy, with data analyzed by principal component analysis. All soil samples were easily distinguished without pre-treatment, indicating the suitability of 3D-printed electrodes in e-tongue analysis to distinguish the chemical fertility of soil samples. Our results encourage further investigations into the development of new tools to support precision agriculture.
Collapse
|
13
|
|
14
|
Jaiswal S, Singh DK, Shukla P. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol 2019; 10:87. [PMID: 30853940 PMCID: PMC6396717 DOI: 10.3389/fmicb.2019.00087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|