1
|
Huang X, Cheng Y, Zhou Q, Tu Y, Yan J. A simple fluorescence detection of acetylcholinesterase with peroxidase-like catalysis from iodide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124116. [PMID: 38490124 DOI: 10.1016/j.saa.2024.124116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2024]
Abstract
Acetylcholinesterase (AChE) is an important enzyme in the central and peripheral nervous system that regulates the balance of the neurotransmitter acetylcholine. In this work, a simple, selective and sensitive fluorescence assay was developed toward AChE activity. A conventional AChE substrate acetylthiocholine iodide (ATCI) was applied. Instead directly rendering a signaling, it was found that free iodide ions was released during the enzymatic hydrolysis of ATCI. These ions further catalyzed the oxidation of non-emissive o-phenylenediamine (OPD) into a fluorescent product. This gave a response differed from frequently-adopted sulfhydryl- -based signals and thus minimized related interferences. All materials included in this process were directly available and no additional syntheses were required. Due to the extra iodide-based catalysis included, this scheme was capable of providing a sensitive response toward AChE in the range of 0.01-8 U/L, with a limit of detection at 0.006 U/L. This method was further extended onto chlorpyrifos as an exemplary AChE inhibitor, with a detection down to 3 pM.
Collapse
Affiliation(s)
- Xiujuan Huang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yuanyuan Cheng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Qi Zhou
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
2
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
3
|
Dinu LA, Kurbanoglu S. Enhancing electrochemical sensing through the use of functionalized graphene composites as nanozymes. NANOSCALE 2023; 15:16514-16538. [PMID: 37815527 DOI: 10.1039/d3nr01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Graphene-based nanozymes possess inherent nanomaterial properties that offer not only a simple substitute for enzymes but also a versatile platform capable of bonding with complex biochemical environments. The current review discusses the replacement of enzymes in developing biosensors with nanozymes. Functionalization of graphene-based materials with various nanoparticles can enhance their nanozymatic properties. Graphene oxide functionalization has been shown to yield graphene-based nanozymes that closely mimic several natural enzymes. This review provides an overview of the classification, current state-of-the-art development, synthesis routes, and types of functionalized graphene-based nanozymes for the design of electrochemical sensors. Furthermore, it includes a summary of the application of functionalized graphene-based nanozymes for constructing electrochemical sensors for pollutants, drugs, and various water and food samples. Challenges related to nanozymes as electrocatalytic materials are discussed, along with potential solutions and approaches for addressing these shortcomings.
Collapse
Affiliation(s)
- Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Tandogan, Ankara, Türkiye.
| |
Collapse
|
4
|
Omidian H, Wilson RL, Babanejad N. Bioinspired Polymers: Transformative Applications in Biomedicine and Regenerative Medicine. Life (Basel) 2023; 13:1673. [PMID: 37629530 PMCID: PMC10456054 DOI: 10.3390/life13081673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bioinspired polymers have emerged as a promising field in biomaterials research, offering innovative solutions for various applications in biomedical engineering. This manuscript provides an overview of the advancements and potential of bioinspired polymers in tissue engineering, regenerative medicine, and biomedicine. The manuscript discusses their role in enhancing mechanical properties, mimicking the extracellular matrix, incorporating hydrophobic particles for self-healing abilities, and improving stability. Additionally, it explores their applications in antibacterial properties, optical and sensing applications, cancer therapy, and wound healing. The manuscript emphasizes the significance of bioinspired polymers in expanding biomedical applications, addressing healthcare challenges, and improving outcomes. By highlighting these achievements, this manuscript highlights the transformative impact of bioinspired polymers in biomedical engineering and sets the stage for further research and development in the field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (N.B.)
| | | | | |
Collapse
|
5
|
Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Qin L, Ren X, Hu K, Wu D, Guo Z, Wang S, Jiang L, Hu Y. Supramolecular host-guest interaction-driven electrochemical recognition for pyrophosphate and alkaline phosphatase analysis. Chembiochem 2022; 23:e202200413. [PMID: 35997506 DOI: 10.1002/cbic.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Indexed: 11/10/2022]
Abstract
Herein, we report an electrochemical biosensor based on the supramolecular host-guest recognition between cucurbit[7]uril (CB[7]) and L -Phenylalanine-Cu(II) Complex for pyrophosphate (PPi) and alkaline phosphatase (ALP) analysis. First, L -Phe-Cu(II) Complex is simply synthesized by the complexation of Cu(II) (metal node) with L -Phe (bioorganic ligand), which can be immobilized onto CB[7] modified electrode via host-guest interaction of CB[7] and L -Phe. In this process, the signal of the Complex triggered electro-catalytic reduction of H 2 O 2 can be captured. Next, in the view of strong chelation between PPi and Cu(II), a biosensing system of the model "PPi and Cu(II) premixing, then adding L -Phe" is designed and the platform can be applied for PPi analysis well by hampering the formation of L -Phe-Cu(II) Complex. Along with ALP introduction, PPi can be hydrolyzed into orthophosphate (Pi), where abundant Cu(II) ions are released to form L -Phe-Cu(II) Complex, which gives rise to the catalytic reaction of Complex to H 2 O 2 reduction. The quantitative analysis of H 2 O 2 , PPi and ALP activity is achieved successfully and the detection of limits are 0.067 μM, 0.42 μM and 0.09 mU/mL ( S / N =3), respectively. With the merits of high sensitivity and selectivity, cost-effectiveness, and simplification, our developed analytical system has great potential to act on diagnosis and treatment of ALP-related diseases.
Collapse
Affiliation(s)
| | | | | | - Di Wu
- Ningbo College of Health Sciences, Chemistry, CHINA
| | | | - Sui Wang
- Ningbo University, Chemistry, CHINA
| | | | - Yufang Hu
- Ningbo University, Chemistry, 818 Fenghua Road,Jiangbei,Ningbo,Zhejiang, 315211, Ningbo, CHINA
| |
Collapse
|
7
|
Ren L, Li H, Liu M, Du J. Light-accelerating oxidase-mimicking activity of black phosphorus quantum dots for colorimetric detection of acetylcholinesterase activity and inhibitor screening. Analyst 2021; 145:8022-8029. [PMID: 33057486 DOI: 10.1039/d0an01917h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A feasible and sensitive colorimetric platform was established for the assay of acetylcholinesterase (AChE) activity and evaluation of its inhibitor screening, based upon the light-accelerating oxidase-mimicking activity of black phosphorus quantum dots (BP QDs). The BP QDs were synthesized through a thermal exfoliation method and characterized using various techniques. The BP QDs exhibit oxidase-mimicking catalytic activity on dissolved oxygen-mediating oxidation of 3,3',5,5'-tetramethylbenzidine, a typical substrate of oxidase. This results in a transformation of 3,3',5,5'-tetramethylbenzidine into its blue oxidized product, which has a visible absorption peak at 652 nm. The exposure of 365 nm light irradiation significantly accelerates the oxidase-mimicking activity of the BP QDs and speeds up the reaction efficiency. AChE can specifically catalyze the decomposition of its substrate acetylthiocholine chloride to thiocholine. Thiocholine has reducing capacity and can thus reduce the oxidase-mimicking activity of the BP QDs. As a result, the oxidation of 3,3',5,5'-tetramethylbenzidine is hindered and the blue solution becomes paler. This gives a linear response for AChE ranging from 0.5 to 10.0 mU mL-1 and a detection limit of 0.17 mU mL-1. The assay was successfully applied to evaluate inhibitor screening with neostigmine as the model.
Collapse
Affiliation(s)
- Lei Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | |
Collapse
|
8
|
Hou X, Xiong B, Wang Y, Wang L, Wang H. Determination of Trace Lead and Cadmium in Decorative Material Using Disposable Screen-Printed Electrode Electrically Modified with Reduced Graphene Oxide/L-Cysteine/Bi-Film. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1322. [PMID: 32121301 PMCID: PMC7085703 DOI: 10.3390/s20051322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
* Correspondence: wanghui_lunwen@163 [...].
Collapse
Affiliation(s)
- Xiaopeng Hou
- Research Institute of Forestry New Technology and Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| | - Li Wang
- Geographic Information Center of Yulin City, Shannxi 719000, China;
| | - Hui Wang
- Research Institute of Forestry New Technology and Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| |
Collapse
|
9
|
Nanoporous gold electrode for ultrasensitive detection of neurotoxin fasciculin. Anal Chim Acta 2019; 1085:91-97. [PMID: 31522735 DOI: 10.1016/j.aca.2019.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Acetylcholinesterase (AChE), an efficient biocatalyst known to hydrolyze the neurotransmitter acetylcholine, could be inactivated in the presence of insecticides, nerve agents or other drug inhibitors to thus result in disrupted neurotransmission. Improvement in the peripheral cholinergic function, as well as overall cognition and neuronal functions of an exposed system could be achieved if the mechanisms of inhibitions are deactivated in a controlled fashion and with rapid response time. Herein, we proposed to develop a simple AChE biosensor capable to realize the rapid detection of neurotoxins. Our approach uses a nanoporous gold film (NPGF) and reduced graphene oxide-tin dioxide nanoparticle (RGO-SnO2) nanocomposite to define the highly active electrode interface where the electrochemical monitoring of the interaction between AChE and its target molecule, fasciculin, could take place. Our results demonstrate that the established biosensor had the ability to monitor fasciculin concentrations at the ultra-low limit of detection of 8 pM, an inhibition rate of 8% and within only 30min of electrochemical exposure. Our study provides a convenient technology for the rapid and ultrasensitive detection of neurotoxins and has the potential for large applicability to other drugs or toxins screening.
Collapse
|
10
|
Shamagsumova RV, Yu. Efimova O, Gorbatchuk VV, Evtugyn VG, Stoikov II, Evtugyn GA. Electrochemical Acetylcholinesterase Biosensor Based on Polylactide–Nanosilver Composite for the Determination of Anti-dementia Drugs. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1557202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezeda V. Shamagsumova
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - Olga Yu. Efimova
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | | | - Vladimir G. Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Kazan, Russian Federation
| | - Ivan I. Stoikov
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - Gennady A. Evtugyn
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|