1
|
Zhang T, Huang Y, Chen X, Zheng F, Shen Y, Chen G, Ye Q, Chen K, Xiao X, Peng Y. Tetraphenylethylene-based AIE nanoprobes for labeling lysosome by two-photon imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123630. [PMID: 37948932 DOI: 10.1016/j.saa.2023.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lysosomes are essential cellular organelles, serving vital functions in cellular metabolism and degradation. The design of specifically targeting lysosomes probes with aggregation-induced emission (AIE) characteristics using two-photon excitation techniques is significance and challenging work. Here we designed and synthesized two tetraphenylethylene (TPE)-based AIE fluorescence probes, naming TPE-Ma and TPE-Py, with TPE as the matrix and morpholine (Ma) or pyrrolidone (Py) as the targeting group. These probes exhibit a significant Stokes shift, low cytotoxicity, two-photo fluorescence imaging and lysosome-specific targeting capability ensuring their suitability for fluorescence imaging applications. To enhance the water solubility and cellular accumulation of TPE-Ma and TPE-Py in tumor cells, we employed a biocompatible polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) as a nanocarrier. By encapsulating TPE-Ma and TPE-Py within DSPE-mPEG2000, we successfully developed two AIE fluorescent nanoprobes known as DSPE@ TPE-Ma and DSPE@ TPE-Py. The results demonstrated that fluorescent nanoprobes DSPE@ TPE-Ma and DSPE@ TPE-Py possess excellent cell permeability, biocompatibility, superior photostability and specific targeting towards lysosomes in MCF-7 cells. Our findings highlight the potential of these fluorescent nanoprobes as effective tools for two-photon fluorescence imaging and targeted detection of lysosomes in cancer cells.
Collapse
Affiliation(s)
- Tiantian Zhang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yan Huang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Fangmei Zheng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yating Shen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Guizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Qiuhao Ye
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Kuizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiufeng Xiao
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
2
|
Zhou W, Pan Y, Liu Y, Liang Q, Zhou D, Wu A, Shu W, Yu W. A novel turn-on fluorescent probe for detection of pH in extremely acidic environment and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123203. [PMID: 37523848 DOI: 10.1016/j.saa.2023.123203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.
Collapse
Affiliation(s)
- Wu Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuanjiang Pan
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Yuxuan Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Dongkui Zhou
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| | - Wenming Shu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Weichu Yu
- School of Chemistry and Environmental Engineering, Yangtze University, Hubei, Jingzhou 434023, PR China; Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University, Hubei, Jingzhou 434023, PR China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Hubei, Jingzhou 434023, PR China.
| |
Collapse
|
3
|
Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022; 27:molecules27134229. [PMID: 35807479 PMCID: PMC9268048 DOI: 10.3390/molecules27134229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in water, the novel compound proved to be a selective PET-based probe for the determination of pHs in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition, the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in the solid-state, thus extending the molecular sensing concept from solution to the solid support.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| | | | | | - Vladimir B. Bojinov
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| |
Collapse
|
4
|
Chen H, Pieuchot L, Xiao P, Dumur F, Lalevée J. Water-soluble/visible-light-sensitive naphthalimide derivative-based photoinitiating systems: 3D printing of antibacterial hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00417h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adaptability of hydrogels allows these structures to be used in a variety of industries, including biomedicine, soft electronics, and sensors. In this study, 10 different naphthalimide derivatives were prepared (five...
Collapse
|
5
|
Liu Z, Sun C, Wang H, Wu T, Qiu B, Xiong X, Liu L. A far-red-emitting fluorescence probe for selective and sensitive detection of no in live cells and in C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120030. [PMID: 34118523 DOI: 10.1016/j.saa.2021.120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), a ubiquitous intracellular and intercellular messenger molecule, plays vital roles in many physiological processes and is closely related to many diseases. Although a lot of fluorescent probes have been developed for real-time detection of NO successfully, the probes still suffer from poor tissue permeability and limited selectivity. In this study, a novel far-red fluorescent probe ZJL-3 based on rhodamine fluorescent dye was designed, synthesized, and used for NO determination. The probe contains a rhodamine as fluorophore and o-phenylenediamino as recognition unit. Upon addition of NO, the probe ZJL-3 showed an obvious far-red emission at 637 nm. The results of fluorescence spectrum experiments indicated that probe ZJL-3 exhibited desirable selectivity to NO. Furthermore, probe ZJL-3 has low cytotoxicity and was applied for the detection of exogenous and endogenous NO in RAW264.7 cells and C. elegans with satisfactory results.
Collapse
Affiliation(s)
- Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tong Wu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baoyu Qiu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021; 60:12258-12263. [DOI: 10.1002/anie.202016105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
7
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
8
|
Tümay SO, Şenocak A, Mermer A. A “turn-on” small molecule fluorescent sensor for the determination of Al 3+ ion in real samples: theoretical calculations, and photophysical and electrochemical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03462f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fluorescence sensing properties of a naphthalene-based acetohydrazide (3) were investigated. A highly selective “turn-on” response was obtained towards Al3+ ions, and this was used for real sample analysis and development of paper test strips.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Arif Mermer
- University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Uskudar, 34662, Istanbul, Turkey
| |
Collapse
|
9
|
Wumaier M, Yao TM, Hu XC, Hu ZA, Shi S. Luminescent Ru(ii)-thiol modified silver nanoparticles for lysosome targeted theranostics. Dalton Trans 2020; 48:10393-10397. [PMID: 31162516 DOI: 10.1039/c9dt00878k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) modified by luminescent Ru(ii) complexes not only possess bright red fluorescence but also can target lysosomes. Cell imaging and a cytotoxicity study suggest that Ru1-2·AgNPs may act as a potential theranostic agent.
Collapse
Affiliation(s)
- Maierhaba Wumaier
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Tian-Ming Yao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Xiao-Chun Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhi-An Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China. and Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
10
|
Guo S, Sun Y, Geng X, Yang R, Xiao L, Qu L, Li Z. Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J Mater Chem B 2020; 8:736-742. [DOI: 10.1039/c9tb02043h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsic lysosomal targeting carbon dots were synthesized with ultrastability for long-term lysosome imaging of living cells and drug-induced apoptotic cells.
Collapse
Affiliation(s)
- Shuo Guo
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuanqiang Sun
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xin Geng
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ran Yang
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Lingbo Qu
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhaohui Li
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
11
|
Zhu JL, Xu Z, Yang Y, Xu L. Small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes. Chem Commun (Camb) 2019; 55:6629-6671. [PMID: 31119257 DOI: 10.1039/c9cc03299a] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past few years, the preparation of novel small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes has attracted considerable attention because of their wide applications in chemistry, biology, and medical science. This feature article summarizes the recent advances in the design and preparation of small-molecule fluorescent probes for specific detection of chemical species inside lysosomes. In addition, their properties and applications for the detection and imaging of pH, H2O2, HOCl, O2˙-, lipid peroxidation, H2S, HSO3-, thiols, NO, ONOO-, HNO, Zn2+, Cu2+, enzymes, etc. in lysosomes are discussed as well.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | | | | | | |
Collapse
|
12
|
Ostad SN, Babaei S, Bayat AA, Mahmoudian J. Photobleaching Comparison of R-Phycoerythrin-Streptavidin and Streptavidin-Alexa Fluor 568 in a Breast Cancer Cell Line. Monoclon Antib Immunodiagn Immunother 2019; 38:25-29. [DOI: 10.1089/mab.2018.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Babaei
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Mazandaran, Iran
| | - Ali Ahmad Bayat
- ACECR, Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- ACECR, Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| |
Collapse
|
13
|
Zhang Q, Xu S, Li M, Wang Y, Zhang N, Guan Y, Chen M, Chen CF, Hu HY. Rationally designed organelle-specific thermally activated delayed fluorescence small molecule organic probes for time-resolved biological applications. Chem Commun (Camb) 2019; 55:5639-5642. [DOI: 10.1039/c9cc00898e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new strategy for TADF-based probes to maintain long fluorescence emission lifetime in TRFI studies in cells was developed.
Collapse
Affiliation(s)
- Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Meng Li
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Yali Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Na Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Yan Guan
- Analytical Instrumentation Centre
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Mingxing Chen
- Analytical Instrumentation Centre
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Chuan-Feng Chen
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| |
Collapse
|
14
|
Wang J, Zhu Y, Wang H, Yang M. 3-Acetyl-7-[2-(morpholin-4-yl)ethoxy]chromen-2-one. IUCRDATA 2018. [DOI: 10.1107/s2414314618013275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C17H19NO5, the morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. In the crystal, the molecules are linked by C—H...O and weak aromatic π–π stacking interactions, thereby generating a layered structure.
Collapse
|