1
|
Sun D, Robbins K, Morales N, Shu Q, Cen H. Advances in optical phenotyping of cereal crops. TRENDS IN PLANT SCIENCE 2022; 27:191-208. [PMID: 34417079 DOI: 10.1016/j.tplants.2021.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Optical sensors and sensing-based phenotyping techniques have become mainstream approaches in high-throughput phenotyping for improving trait selection and genetic gains in crops. We review recent progress and contemporary applications of optical sensing-based phenotyping (OSP) techniques in cereal crops and highlight optical sensing principles for spectral response and sensor specifications. Further, we group phenotypic traits determined by OSP into four categories - morphological, biochemical, physiological, and performance traits - and illustrate appropriate sensors for each extraction. In addition to the current status, we discuss the challenges of OSP and provide possible solutions. We propose that optical sensing-based traits need to be explored further, and that standardization of the language of phenotyping and worldwide collaboration between phenotyping researchers and other fields need to be established.
Collapse
Affiliation(s)
- Dawei Sun
- College of Biosystems Engineering and Food Science, and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, PR China
| | - Kelly Robbins
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicolas Morales
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Qingyao Shu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, PR China
| | - Haiyan Cen
- College of Biosystems Engineering and Food Science, and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Huang C, Wang Z, Zhu P, Wang C, Wang C, Xu W, Li Z, Fu W, Zhu S. RNA Interference-Based Genetic Engineering Maize Resistant to Apolygus lucorum Does Not Manifest Unpredictable Unintended Effects Relative to Conventional Breeding: Short Interfering RNA, Transcriptome, and Metabolome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:745708. [PMID: 35283891 PMCID: PMC8908210 DOI: 10.3389/fpls.2022.745708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
The use of omics techniques to analyze the differences between genetic engineering organisms and their parents can identify unintended effects and explore whether such unintended effects will have negative consequences. In order to evaluate whether genetic engineering will cause changes in crops beyond the changes introduced by conventional plant breeding, we compared the extent of transcriptome and metabolome modification in the leaves of three lines developed by RNA interference (RNAi)-based genetic engineering and three lines developed by conventional breeding. The results showed that both types of plant breeding methods can manifest changes at the short interfering RNA (siRNA), transcriptomic, and metabolic levels. Relative expression analysis of potential off-target gene revealed that there was no broad gene decline in the three RNAi-based genetic engineering lines. We found that the number of DEGs and DAMs between RNAi-based genetic engineering lines and the parental line was less than that between conventional breeding lines. These unique DEGs and DAMs between RNAi-based genetic engineering lines and the parental lines were not enriched in detrimental metabolic pathways. The results suggest that RNAi-based genetic engineering do not cause unintended effects beyond those found in conventional breeding in maize.
Collapse
Affiliation(s)
- Chunmeng Huang
- College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhi Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wenjie Xu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- *Correspondence: Wei Fu,
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Shuifang Zhu,
| |
Collapse
|
3
|
de Juan A, Tauler R. Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review. Anal Chim Acta 2021; 1145:59-78. [DOI: 10.1016/j.aca.2020.10.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
|
4
|
Marcheafave GG, Tormena CD, Mattos LE, Liberatti VR, Ferrari ABS, Rakocevic M, Bruns RE, Scarminio IS, Pauli ED. The main effects of elevated CO 2 and soil-water deficiency on 1H NMR-based metabolic fingerprints of Coffea arabica beans by factorial and mixture design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142350. [PMID: 33370915 DOI: 10.1016/j.scitotenv.2020.142350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
The metabolic response of Coffea arabica trees in the face of the rising atmospheric concentration of carbon dioxide (CO2) combined with the reduction in soil-water availability is complex due to the various (bio)chemical feedbacks. Modern analytical tools and the experimental advance of agronomic science tend to advance in the understanding of the metabolic complexity of plants. In this work, Coffea arabica trees were grown in a Free-Air Carbon Dioxide Enrichment dispositive under factorial design (22) conditions considering two CO2 levels and two soil-water availabilities. The 1H NMR mixture design-fingerprinting effects of CO2 and soil-water levels on beans were strategically investigated using the principal component analysis (PCA), analysis of variance (ANOVA) - simultaneous component analysis (ASCA) and partial least squares-discriminant analysis (PLS-DA). From the ASCA, the CO2 factor had a significant effect on changing the 1H NMR profile of fingerprints. The soil-water factor and interaction (CO2 × soil-water) were not significant. 1H NMR fingerprints with PCA, ASCA and PLS-DA analysis determined spectral profiles for fatty acids, caffeine, trigonelline and glucose increases in beans from current CO2, while quinic acid/chlorogenic acids, malic acid and kahweol/cafestol increased in coffee beans from elevated CO2. PLS-DA results revealed a good classification performance between the significant effect of the atmospheric CO2 levels on the fingerprints, regardless of the soil-water availabilities. Finally, the PLS-DA model showed good prediction ability, successfully classifying validation data-set of coffee beans collected over the vertical profile of the plants and included several fingerprints of different extracting solvents. The results of this investigation suggest that the association of experimental design, mixture design, PCA, ASCA and PLS-DA can provide accurate information on a series of metabolic changes provoked by climate changes in products of commercial importance, in addition to minimizing the extra work necessary in classic analytical approaches, encouraging the development of similar strategies.
Collapse
Affiliation(s)
- Gustavo Galo Marcheafave
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Cláudia Domiciano Tormena
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Lavínia Eduarda Mattos
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Vanessa Rocha Liberatti
- Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | | | - Miroslava Rakocevic
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Embrapa Environment, Rodovia SP 340, Km 127.5, 13820-000 Jaguariúna, SP, Brazil
| | - Roy Edward Bruns
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Ieda Spacino Scarminio
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Elis Daiane Pauli
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
5
|
Høgset H, Horgan CC, Armstrong JPK, Bergholt MS, Torraca V, Chen Q, Keane TJ, Bugeon L, Dallman MJ, Mostowy S, Stevens MM. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nat Commun 2020; 11:6172. [PMID: 33268772 PMCID: PMC7710741 DOI: 10.1038/s41467-020-19827-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.
Collapse
Affiliation(s)
- Håkon Høgset
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Conor C Horgan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Craniofacial Development & Stem Cell Biology, Kings College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Hashemi-Nasab FS, Parastar H. Pattern recognition analysis of gas chromatographic and infrared spectroscopic fingerprints of crude oil for source identification. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
de Juan A. Multivariate curve resolution for hyperspectral image analysis. DATA HANDLING IN SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-444-63977-6.00007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|