1
|
Yan R, Zhang N, Liu W, Hu X, Wang W, Tang Y, Wang S, Wang X, Sheng Q. Novel Eu-dipeptide assemblies for a fluorescence sensing strategy to ultrasensitive determine trace sulfamethazine. Food Chem 2024; 448:139089. [PMID: 38518446 DOI: 10.1016/j.foodchem.2024.139089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Self-assembled Eu-dipeptide (tryptophan-phenylalanine) microparticles with multi-emission fluorescence was prepared and modified with a single-stranded DNA corresponding to the sulfamethazine (SMZ) adapter (Eu-PMPs@cDNA). Aptamer-functionalized magnetic Fe3O4 (MNPs@aptamer) was used to specifically bind the target SMZ. Using Eu-PMPs@cDNA as fluorescent signal probe and MNPs@aptamer as catcher, a noncompetitive fluorescence sensing strategy was developed for determination of SMZ with good sensitivity, accuracy, selectivity, and stability. Under the optimized conditions, fluorescence increases linearly in the 0-20 ng/mL SMZ concentration range, and the detection limit is 0.014 ng/mL. The fluorescence sensing method was applied to analysis of water and fish muscle samples, and recoveries ranged from 81.78 to 119.46 % with relative standard deviations below 4.2 %. This study offered a reliable and sensitive fluorescence sensing strategy for SMZ determination in food samples, which owns great potential for wide-ranging application in harmful compounds assay by simply changing the type of aptamer and its complementary single-stranded DNA.
Collapse
Affiliation(s)
- Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ning Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qinghai Sheng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Pang S, Wang M, Yuan J, Yang Z, Yu H, Zhang H, Dong T, Liu A. Sensitive Dual-Signal ELISA Based on Specific Phage-Displayed Double Peptide Probes with Internal Filtering Effect to Assay Monkeypox Virus Antigen. Anal Chem 2024; 96:10064-10073. [PMID: 38842443 DOI: 10.1021/acs.analchem.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The global spread of monkeypox has become a worldwide public healthcare issue. Therefore, there is an urgent need for accurate and sensitive detection methods to effectively control its spreading. Herein, we screened by phage display two peptides M4 (sequence: DPCGERICSIAL) and M6 (sequence: SCSSFLCSLKVG) with good affinity and specificity to monkeypox virus (MPXV) B21R protein. To simulate the state of the peptide in the phage and to avoid spatial obstacles of the peptide, GGGSK was added at the C terminus of M4 and named as M4a. Molecular docking shows that peptide M4a and peptide M6 are bound to different epitopes of B21R by hydrogen bonds and salt-bridge interactions, respectively. Then, peptide M4a was selected as the capture probe, phage M6 as the detection probe, and carbonized polymer dots (CPDs) as the fluorescent probe, and a colorimetric and fluorescent double-signal capture peptide/antigen/signal peptide-displayed phage sandwich ELISA triggered by horseradish peroxidase (HRP) through a simple internal filtration effect (IFE) was constructed. HRP catalyzes H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB, which can further quench the fluorescence of CPDs through IFE, enabling to detect MPXV B21R in colorimetric and fluorescent modes. The proposed simple immunoassay platform shows good sensitivity and reliability in MPXV B21R detection. The limit of detection for colorimetric and fluorescent modes was 27.8 and 9.14 pg/mL MPXV B21R, respectively. Thus, the established double-peptide sandwich-based dual-signal immunoassay provides guidance for the development of reliable and sensitive antigen detection capable of mutual confirmation, which also has great potential for exploring various analytical strategies for other respiratory virus surveillance.
Collapse
Affiliation(s)
- Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jinlong Yuan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhonghuang Yang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haohan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
3
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Wang Y, Niu Z, Xu C, Zhan M, Koh K, Niu J, Chen H. 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of Sulfamethazine via supramolecular probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131642. [PMID: 37236101 DOI: 10.1016/j.jhazmat.2023.131642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Sulfamethazine (SMZ) is widely present in the environment and can cause severe allergic reactions and cancer in humans. Accurate and facile monitoring of SMZ is crucial for maintaining environmental safety, ecological balance, and human health. In this work, a real-time and label-free surface plasmon resonance (SPR) sensor was devised using a two-dimensional metal-organic framework with superior photoelectric performance as an SPR sensitizer. The supramolecular probe was incorporated at the sensing interface, allowing for the specific capture of SMZ from other analogous antibiotics through host-guest recognition. The intrinsic mechanism of the specific interaction of the supramolecular probe-SMZ was elucidated through the SPR selectivity test in combination with analysis by density functional theory, including p-π conjugation, size effect, electrostatic interaction, π-π stacking, and hydrophobic interaction. This method facilitates a facile and ultrasensitive detection of SMZ with a limit of detection of 75.54 pM. The accurate detection of SMZ in six environmental samples demonstrates the potential practical application of the sensor. Leveraging the specific recognition of supramolecular probes, this direct and simple approach offers a novel pathway for the development of novel SPR biosensors with outstanding sensitivity.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Zhijuan Niu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chengcheng Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Minghui Zhan
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan 609-735, Republic of Korea
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Jiang GY, Liu L, Wan YQ, Li JK, Pi FW. Surface-enhanced Raman scattering based determination on sulfamethazine using molecularly imprinted polymers decorated with silver nanoparticles. Mikrochim Acta 2023; 190:169. [PMID: 37016038 DOI: 10.1007/s00604-023-05744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/12/2023] [Indexed: 04/06/2023]
Abstract
Molecularly imprinted polymers (MIPs) were combined with surface-enhanced Raman scattering (SERS) and AgNPs were prepared by in situ reduction within the MIP for selective and sensitive detection of sulfamethazine (SMZ). The MIP@AgNPs composites were characterized in detail by several analytical techniques, showing the generation of polymers and the formation of AgNPs hot spots. The specific affinity and rapid adsorption equilibrium rates of MIP@AgNPs composites were verified by static and kinetic adsorption studies. The MIP@AgNPs with high selectivity and excellent sensitivity were used as SERS substrates to detect SMZ. A good linear correlation (R2 = 0.996) in rang of 10-10-10-6 mol L-1 was observed between the Raman signal (1596 cm-1) and the concentration of SMZ. The limit of detection (LOD) was as low as 8.10 × 10-11 mol L-1 with relative standard deviations (RSD) of 6.32%. The good stability and reproducibility are also fully reflected in the SERS detection based on MIP@AgNPs. The method was successfully applied to the analysis of lake water samples, with recoveries in the range 85.1% to 102.5%. In summary, SERS detection based on MIP@AgNPs can be developed for a wider and broader range of practical applications. Schematic illustration of MIP@AgNPs sensor for the SERS detection of sulfamethazine.
Collapse
Affiliation(s)
- Guo-Yong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Qi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jing-Kun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fu-Wei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
7
|
Sensitive and visual determination of sulfamethazine in milk and drinking water using aggregation-induced emission fluorescent sensor based on luminol-europium nanocomposites. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Duan C, Zhang Y, Li P, Li Q, Yu W, Wen K, Eremin SA, Shen J, Yu X, Wang Z. Dual-Wavelength Fluorescence Polarization Immunoassay for Simultaneous Detection of Sulfonamides and Antibacterial Synergists in Milk. BIOSENSORS 2022; 12:bios12111053. [PMID: 36421171 PMCID: PMC9688798 DOI: 10.3390/bios12111053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/28/2023]
Abstract
Combinations of sulfonamides (SAs) and antibacterial synergists (ASGs) are frequently used for treating infectious diseases and promoting growth for animals, which cause potential hazards to food safety and human health. To realize the simultaneous detection of SAs and ASGs in food, a homogeneous and high-throughput screening dual-wavelength fluorescence polarization immunoassay (DWFPIA) was developed. In this study, three SAs tracers and three ASGs tracers were synthesized by fluoresceins with different linkers and paired with their corresponding monoclonal antibodies (mAbs), respectively. To achieve a high sensitivity and broad specificity, the combination of tracers SADMPM-HDF with the longest linker paring mAb 10E6 for SAs and tracer HaptenA-DSCA paring mAb 9C9 for ASGs were chosen for the development of DWFPIA, achieving surprising IC50 values for 23 SAs below 100 μg L-1 and 5 ASGs below 50 μg L-1. The accuracy of DWFPIA was applied in real milk samples by typical sulfamethazine (SMZ) and trimethoprim (TMP), with recoveries of 81.7-97.2% and 78.6-103.6%, and coefficient of variations (CVs) below 18.9%, which could be completed within 15 min, including sample pretreatment. We firstly developed a simultaneous screening DWFPIA, covering all of the SAs and ASGs used in clinic and providing a great application potential in food safety analysis.
Collapse
Affiliation(s)
- Changfei Duan
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingjie Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peipei Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiang Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sergei A. Eremin
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Wu S, Zhang X, Chen W, Zhang G, Zhang Q, Yang H, Zhou Y. Alkaline phosphatase triggered ratiometric fluorescence immunoassay for detection of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yang W, Shen J, Zhu S, Si H, Song F, Zhang W, Ding H, Huang W. Preparation and Characterisation of Photoresponsive Molecularly Imprinted Polymer Based on 5-[(4-(methacryloyloxy) phenyl) diazenyl] isophthalic acid for the Determination of Sulfamethazine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Dual modes of fluorescence sensing and smartphone readout for sensitive and visual detection of mercury ions in Porphyra. Anal Chim Acta 2022; 1226:340153. [DOI: 10.1016/j.aca.2022.340153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
|
12
|
Wang Z, Xing K, Ding N, Wang S, Zhang G, Lai W. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127204. [PMID: 34555767 DOI: 10.1016/j.jhazmat.2021.127204] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Herein, we propose a lateral flow immunoassay (LFIA) based on the dual spectral-overlapped fluorescence quenching of polydopamine nanospheres (PDANs) caused by the inner filter effect to sensitively detect sulfamethazine (SMZ). The fluorescence quenching LFIA device consists of four parts: absorbent pad, polyvinyl chloride pad, sample pad, and nitrocellulose membrane. Compared with traditional quenchers such as gold nanoparticles (AuNPs) with single spectral-overlapped quenching ability, PDANs can quench the excitation light and emission light of three fluorescence donors (aggregation-induced emission fluorescent microsphere, AIEFM; fluorescent microsphere, FM; and quantum dot bead, QB). The fluorescence intensity changes (ΔF) are numerically larger for PDANs-LFIA (ΔFAIEFM = 2315, ΔFFM = 979, ΔFQB = 910) than those for AuNPs-LFIA (ΔFAIEFM = 1722, ΔFFM = 833, ΔFQB =;520). AIEFM-based PDANs-LFIA exhibits a large ΔF (2315) in response to the changes in the SMZ concentration, and produces a high signal-to-noise ratio. The limit of detection (LOD) and visual LOD of LFIA based on PDANs quenching AIEFM for the detection of SMZ in chicken are 0.043 and 0.5 ng/mL, respectively. The results confirm that the proposed method can be used for the detection of hazardous materials in practical applications.
Collapse
Affiliation(s)
- Zexiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361116, China; State Key Lab Pig Genet Improvement & Prod Techno, Jiangxi Agricultural University, Nanchang 330045, China
| | - Suhua Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Niu Z, Liu Y, Li X, Zhu H, Zhang M, Yan K, Chen H. Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation. Mikrochim Acta 2022; 189:71. [PMID: 35072770 DOI: 10.1007/s00604-022-05176-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Sulfamethazine (SMZ) is one of the most used broad-spectrum antibiotics owing to its low cost and high efficacy towards bacterial diseases. This workreports a novel label-free SMZ sensor based on para-sulfonatocalix[4]arene (pSC4) capped gold nanoparticles (pSC4-AuNPs) for colorimetric detection through the host-guest interaction. The existence of SMZ resulted in the aggregation of pSC4-AuNPs and can be observed through colorimetric assay. A good linear relationship in the range 2.5 ~ 20 nM was obtained with a correlation coefficient of 0.9908. The limit of detection for SMZ was 1.39 nM. High recoveries (90.18-107.06%) were obtained, and RSD ranged from 1.21 to 2.05%. The color changes can be observed from red to gray within 10 min. Combining the supermolecule's recognition and AuNP's optical performance, the method paves a new, easy, and rapid way for small target sensing.
Collapse
Affiliation(s)
- Zhijuan Niu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275, Guangzhou, People's Republic of China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
He Q, Fang Y, Yang H, Shen D, Chen Y, Zhong Y, Li X, Eremin SA, Cui X, Zhao S. Enhanced performance of a surface plasmon resonance-based immunosensor for the detection of glycocholic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1919-1924. [PMID: 33913980 DOI: 10.1039/d1ay00357g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The concentration of glycocholic acid (GCA) in urine and blood is an important biomarker for liver cancer. Monitoring of GCA depends to a large extent on the availability of appropriate analytical techniques. In this work, based on the immobilization of GCA-OVA onto the sensor chip surface, a label-free competitive inhibition immunoassay for the determination of GCA with the surface plasmon resonance (SPR) technique was developed. The proposed SPR immunosensor is simple to prepare, recyclable and exhibits excellent sensitivity to GCA (a linear range of 13.3-119.4 ng mL-1 and a limit of detection (LOD) of 2.5 ng mL-1), which was 14 times lower than that of the traditional immunoassay. Excellent recoveries and correlation between these two methods were observed (R2 = 0.995). Hence, it can be proved that the SPR immunosensor could be used to achieve rapid and sensitive quantitative detection of GCA in real urine samples and meet clinical needs.
Collapse
Affiliation(s)
- Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Feizollahi A, Rafati AA, Assari P, Asadpour Joghani R. Development of an electrochemical sensor for the determination of antibiotic sulfamethazine in cow milk using graphene oxide decorated with Cu-Ag core-shell nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:910-917. [PMID: 33511972 DOI: 10.1039/d0ay02261f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Determination and sensing of antibiotics in dairy products are the biggest challenges in the world. In continuation of our earlier study, a facile and novel determination method for the detection of sulfamethazine (SMZ) in cow milk has been developed using a glassy carbon electrode modified with graphene oxide decorated with Cu-Ag core-shell nanoparticles. The Cu-Ag core-shell nanoparticles and graphene oxide were synthesized and characterized via different techniques such as TEM, SEM, XRD and FTIR. The as-synthesized Cu-Ag core-shell nanoparticles were used for the decoration of the glassy carbon electrode modified with graphene oxide. The electroanalytical measurements including cyclic voltammetry and square wave voltammetry were performed and compared with HPLC, which was utilized for the determination of SMZ in cow milk. The experimental conditions were optimized to obtain a well-defined response signal. The concentration linear range was 10-1000 μM and the limit of detection was 0.46 μM for S/N = 3. The obtained results show good agreement with HPLC reported data.
Collapse
Affiliation(s)
- Azizallah Feizollahi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P. O. Box 65174, Hamedan, Iran.
| | | | | | | |
Collapse
|
17
|
Wang Z, Hu S, Bao H, Xing K, Liu J, Xia J, Lai W, Peng J. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:684-692. [PMID: 32705699 DOI: 10.1002/jsfa.10681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples. RESULTS Under optimized working conditions, this method had limits of detection of 0.016, 0.049, and 0.029 ng mL-1 and corresponding linear ranges of 0.05 to 1.00, 0.05 to 5.00, and 0.05 to 1.00 ng mL-1 in egg, honey, and pork samples, respectively. The recovery experiments showed that the average recoveries ranged from 90.5% to 113.9%, 82.4% to 112.0%, and 79.8% to 93.4% with corresponding coefficients of variation of 4.1% to 11.7%, 7.5% to 11.5%, and 4.8% to 8.7% for egg, honey, and pork samples, respectively. The developed TRFN-ICA was also systematically compared with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) by analyzing 45 actual samples from egg, honey, and pork. CONCLUSION Overall, the developed TRFN-ICA had high reliability and excellent potential for the ultrasensitive detection of SMZ for food safety monitoring, also providing a universal platform for the on-site detection of other targets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zexiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Huanhuan Bao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jintao Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Xia
- Jiangxi Institute of Veterinary Drug and Feedstuff Control, Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juan Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
A novel fluorescence immunoassay based on inner filter effect and gold nanoclusters for Vibrio parahaemolyticus determination. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Wang HL, Si XJ, Wu TH, Wang P. New Enhanced Method for Determination of Trace Sulfamethodxazole Based on the Fluorescence Behaviors of Cyclodextrins in Water Solutions. J Fluoresc 2020; 30:1105-1112. [PMID: 32638148 DOI: 10.1007/s10895-020-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
The widespread occurrence of sulfonamides (SAs) in the environment water has rasied great concerns about their potential to antibiotics resistance. In this study, the fluorescence behaviors of sulfamethoxazole (SMZ) representing certain properties of the SAs mixed with three different kinds of cyclodextrins (CDs) in water solutions were investigated, respectively. The result reported that the shapes of the fluorescence peak and its position for the SMZ that were mixed with the CDs were almost the same as those of the standard SMZ, respectively. In addition, compared with the identical control sample the fluorescence of SMZ mixed with each of the CD was greatly enhanced. Therefore, a new simple, and sensitive spectrofluorimetric method for the determination of SMZ was established in water solutions. and the dynamic linear ranges varied from 0.01 to 0.7 mg/L with the detection limit of 7.1 ng/L. And the correlation coefficient was more than 99.9%. Significantly, this new method was successfully applied to direct determination of SMZ in pharmaceutical compounds. Moreover, the results showed that the SMZ could separately form the 1:1 supramolecular compound with each of the CD.
Collapse
Affiliation(s)
- Hong-Ling Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue-Jing Si
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tun-Hua Wu
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, Zhejiang, China.
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020; 187:274. [DOI: 10.1007/s00604-020-04244-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
|
21
|
Dong B, Li H, Mujtaba Mari G, Yu X, Yu W, Wen K, Ke Y, Shen J, Wang Z. Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chem 2019; 294:347-354. [DOI: 10.1016/j.foodchem.2019.05.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 01/06/2023]
|
22
|
Kaewwonglom N, Oliver M, Cocovi-Solberg DJ, Zirngibl K, Knopp D, Jakmunee J, Miró M. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology. Anal Chem 2019; 91:13260-13267. [DOI: 10.1021/acs.analchem.9b03855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Natcha Kaewwonglom
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - David J. Cocovi-Solberg
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Katharina Zirngibl
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Jaroon Jakmunee
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|