1
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
2
|
Song D, Zhu S, Chen L, Zhang T, Zhang L. The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120085. [PMID: 36058313 DOI: 10.1016/j.envpol.2022.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms.
Collapse
Affiliation(s)
- Dongdong Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Ting Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Sun L, Zhu G, Liao X. Rhizosphere interactions between PAH-degrading bacteria and Pteris vittata L. on arsenic and phenanthrene dynamics and transformation. CHEMOSPHERE 2021; 285:131415. [PMID: 34265710 DOI: 10.1016/j.chemosphere.2021.131415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The pot experiment was conducted to monitor the dynamics in soil solution chemistry in order to determine the main rhizosphere processes determining As and PAH bioavailability when utilizing P. vittata and PAH-degrading bacteria to remediate co-contaminated soils. The result showed that P. vittata was capable of depleting soil solution As and increasing phenanthrene solubilization, and thus facilitating plant As uptake and phenanthrene dissipation. Bacterial inoculation enhanced soil phenanthrene dissipation and concurrently modified As bioavailability though increasing soil pH, facilitating Fe and Ca minerals solubilization, and accelerating organic matter decomposition. However, the main factors that determine As bioavailability in the rhizosphere considerably varied with plant genotypes. Upon bacterial inoculation, P and Fe strongly influenced As(V) availability and its uptake by the Guangxi accession, and DOC, Fe, and pH were the main parameters correlated with As(V) availability in the rhizosphere of the Hunan accession. Bacterial inoculation tended to stimulate As(V) reduction in the rhizosphere of P. vittata. Microbial-induced changes in Ca, S, and C cycling and pH were indicators of As(V) reduction. Although bacterial inoculation increased soil As and phenanthrene availability, striking differences in As and nutrients uptake and phenanthrene dissipation were observed between P. vittata genotypes. It is suggested that apart from the microbial transformation, plant genotypes and bacterial mediated plant nutrition are also the critical factors in controlling the fates of As and phenanthrene. Our results uncovered the interactions between P. vittata and PAH-degrading bacteria on rhizosphere properties and nutrients cycling regulating As and PAH availability and remediation efficiency.
Collapse
Affiliation(s)
- Lu Sun
- China Geological Environmental Monitoring Institute, Beijing, 100081, PR China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiaoyong Liao
- Land Contamination Assessment and Remediation Laboratory, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
4
|
Li Y, Li Y, Wang Y, Ma G, Liu X, Li Y, Soar J. Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Pang Y, Huang Y, Li W, Yang N, Shen X. Electrochemical Detection of Three Monohydroxylated Polycyclic Aromatic Hydrocarbons Using Electroreduced Graphene Oxide Modified Screen‐printed Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.201900692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue‐Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Yu‐Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Wan‐Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Nian‐Ci Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Xiao‐Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| |
Collapse
|
6
|
Pang Y, Yang N, Shen X, Zhang Y, Feng L. Conjugated polymer self-assembled with graphene: Synthesis and electrochemical 1-hydroxypyrene sensor. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang X, Sun Z, Luo X, Wang K, Zhang S, Ji Z, Gao Y, You J. A novel switchable solvent liquid-phase microextraction technique based on the solidification of floating organic droplets: HPLC-FLD analysis of polycyclic aromatic hydrocarbon monohydroxy metabolites in urine samples. NEW J CHEM 2020. [DOI: 10.1039/c9nj05548g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel switchable solvent liquid-phase microextraction technique, based on the solidification of floating organic droplets (SS-LPME-SFO), was developed for the pretreatment of aqueous samples.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Xianzhu Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Kaifeng Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Shijuan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Zhongyin Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Yue Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province
- Qufu Normal University
- Qufu 273165
- China
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
| |
Collapse
|