1
|
Tortajada-Genaro LA. Massive Screening of Food Extracts for Quality Assessment and Standardization of Allergenic Activity. BIOSENSORS 2024; 14:615. [PMID: 39727880 DOI: 10.3390/bios14120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
(1) Background: In drug discovery and pharmaceutical quality control, a challenge is to assess protein extracts used for allergy therapy and in vivo diagnosis, such as prick tests. Indeed, there are significant differences between the features of marketed products due to variations in raw materials, purification processes, and formulation techniques. (2) Methods: A protein array technology has been developed to provide comprehensive information on protein-biomarker interactions on a large scale to support the pharmaceutical industry and clinical research. The biosensing method is based on immobilizing low volumes of protein extracts (40 nL) on thermoplastic chips in array format. The biological activity was estimated by incubating with serum from representative food allergy patients. (3) Results: The reproducible optical signals were registered (deviation lower than 10%) using low-cost technologies such as a smartphone and a reader of digital versatile discs. The method was applied to pharmaceutical products to diagnose ten common food allergies, including barley, kiwi, milk, prawn, egg, peanut, wheat, peach, walnut, and squid. Quality indicators were established from spot intensities, enabling an effective comparison of manufacturers. (4) Conclusions: A biosensing-based strategy for screening pharmaceutical products emerges as a reliable and advantageous alternative to traditional approaches such as electrophoresis, fluorescence chips, and ELISA assays. This high-throughput method can contribute to understanding complex biological processes and evaluate the performance of pharmaceutical products.
Collapse
Affiliation(s)
- Luis Antonio Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, E46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain
- Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Instituto de Investigación Sanitaria La Fe, E46026 Valencia, Spain
| |
Collapse
|
2
|
Tortajada-Genaro LA, Quintero-Campos P, Juárez MJ, Ibañez-Echevarria E, Chiriac AM, Fernández E, Morais S, Maquieira Á. Development and validation study of compact biophotonic platform for detection of serum biomarkers. Talanta 2024; 278:126511. [PMID: 38986307 DOI: 10.1016/j.talanta.2024.126511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The application of advances in personalized medicine requires the support of in vitro diagnostic techniques aimed at the accurate, fast, sensitive, and precise determination of selected biomarkers. Herein, a novel optical centrifugal microfluidic device is developed for clinical analysis and point-of-care diagnostics. Based on compact disc technology, the integrated biophotonic system enables multiple immunoassays in miniaturized mode. The disposable microfluidic discs are made in cyclic olefin copolymer (COP), containing arrays of immobilized probes. In the developed approach, up to six patient samples can each be tested simultaneously. A portable instrument (<2 kg) controls the assay and the high-sensitive reproducible optical detection in transmission mode. Also, the instrument incorporates specific functionalities for personalized telemedicine. The device (analytical method, disc platform, reader, and software) has been validated to diagnose IgE-mediated drug allergies, such as amoxicillin and penicillin G. The total and specific IgE to β-lactam antibiotics were determined in human serum from patients (25 μL). The excellent analytical performances (detection limit 0.24 ng/mL, standard deviation 7-20 %) demonstrated that the developed system could have the potential for a broader impact beyond the allergy field, as it applies to other IVD tests.
Collapse
Affiliation(s)
- Luis Antonio Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain.
| | - Pedro Quintero-Campos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Juárez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ethel Ibañez-Echevarria
- Hospital Universitari i Politènic La Fe, Servicio de Alergología, Avinguda de Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Anca Mirela Chiriac
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain
| |
Collapse
|
3
|
Alipourfard I, Darvishi M, Khalighfard A, Ghazi F, Mobed A. Nanomaterial-based methods for sepsis management. Enzyme Microb Technol 2024; 174:110380. [PMID: 38147783 DOI: 10.1016/j.enzmictec.2023.110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.
Collapse
Affiliation(s)
- Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Arghavan Khalighfard
- Department of Nursing and Midwifery٫ Faculty of Midwifery٬ Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Tortajada-Genaro LA, Lazaro A, Martorell S, Maquieira A. Nucleotide-selective amplification and array-based detection for identifying multiple somatic mutations. Anal Chim Acta 2023; 1265:341343. [PMID: 37230582 DOI: 10.1016/j.aca.2023.341343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
In the context of personalized and cost-effective treatment, knowledge of the mutational status of specific genes is advantageous to predict which patients are responsive to therapies. As an alternative to one-by-one detection or massive sequencing, the presented genotyping tool determines multiple polymorphic sequences that vary a single nucleotide. The biosensing method includes an effective enrichment of mutant variants and selective recognition by colorimetric DNA arrays. The proposed approach is the hybridization between sequence-tailored probes and products from PCR with SuperSelective primers to discriminate specific variants in a single locus. A fluorescence scanner, a documental scanner, or a smartphone captured the chip images to obtain spot intensities. Hence, specific recognition patterns identified any single-nucleotide change in the wild-type sequence overcoming qPCR methods and other array-based approaches. Studied mutational analyses applied to human cell lines provided high discrimination factors, the precision was 95%, and the sensitivity was 1% mutant of total DNA. Also, the methods showed a selective genotyping of the KRAS gene from tumorous samples (tissue and liquid biopsy), corroborating results by NGS. The developed technology supported on low-cost robust chips and optical reading provides an attractive pathway toward implementing fast, cheap, reproducible discrimination of oncological patients.
Collapse
Affiliation(s)
- Luis A Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain.
| | - Ana Lazaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sara Martorell
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Isothermal nucleic acid amplification technology for rapid detection of virus. Crit Rev Biotechnol 2023; 43:415-432. [PMID: 35156471 DOI: 10.1080/07388551.2022.2030295] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.
Collapse
Affiliation(s)
- Zhenting Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Xiaowen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Huhu Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fanpu Ji
- Department of Infectious Diseases, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Nanchong, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
| | - Xiaoping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanchong, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Nanchong, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanchong, China
| |
Collapse
|
6
|
Tortajada-Genaro LA, Lucío MI, Maquieira Á. Fast DNA biosensing based on isothermal amplification, unmodified gold nanoparticles, and smartphone detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Lázaro A, Maquieira Á, Tortajada-Genaro LA. Discrimination of Single-Nucleotide Variants Based on an Allele-Specific Hybridization Chain Reaction and Smartphone Detection. ACS Sens 2022; 7:758-765. [PMID: 35188365 PMCID: PMC8961872 DOI: 10.1021/acssensors.1c02220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Massive DNA testing
requires novel technologies to support a sustainable
health system. In recent years, DNA superstructures have emerged as
alternative probes and transducers. We, herein, report a multiplexed
and highly sensitive approach based on an allele-specific hybridization
chain reaction (AS-HCR) in the array format to detect single-nucleotide
variants. Fast isothermal amplification was developed before activating
the HCR process on a chip to work with genomic DNA. The assay principle
was demonstrated, and the variables for integrating the AS-HCR process
and smartphone-based detection were also studied. The results were
compared to a conventional polymerase reaction chain (PCR)-based test.
The developed multiplex method enabled higher selectivity against
single-base mismatch sequences at concentrations as low as 103 copies with a limit of detection of 0.7% of the mutant DNA
percentage and good reproducibility (relative error: 5% for intra-assay
and 17% for interassay). As proof of concept, the AS-HCR method was
applied to clinical samples, including human cell cultures and biopsied
tissues of cancer patients. Accurate identification of single-nucleotide
mutations in KRAS and NRAS genes
was validated, considering those obtained from the reference sequencing
method. To conclude, AS-HCR is a rapid, simple, accurate, and cost-effective
isothermal method that detects clinically relevant genetic variants
and has a high potential for point-of-care demands.
Collapse
Affiliation(s)
- Ana Lázaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Av. Fernando Abril Martorell, 46026 Valencia, Spain
| | - Luis A. Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Av. Fernando Abril Martorell, 46026 Valencia, Spain
| |
Collapse
|
8
|
Tortajada-Genaro LA. DNA Genotyping Based on Isothermal Amplification and Colorimetric Detection by Consumer Electronics Devices. Methods Mol Biol 2022; 2393:163-178. [PMID: 34837179 DOI: 10.1007/978-1-0716-1803-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The point-of-care testing of DNA biomarkers requires compact biosensing systems and consumer electronic technologies provide fascinating opportunities. Their portability, mass-produced components, and high-performance readout capabilities are the main advantages for the development of novel bioanalytical methods.This chapter describes the detection of single nucleotide polymorphisms (SNP) through methods based on user-friendly optical devices (e.g., USB digital microscope, flatbed scanner, smartphone, and DVD drive). Loop mediated isothermal amplification (LAMP) enables the required discrimination of each specific variant prior to the optical reading. In the first method, products are directly hybridized to the allele-specific probes attached to plastic chips in an array format. The second method, allele-specific primers are used, enabling the direct end-point detection based a colorimetric dyer and a microfluidic chamber chip. In both approaches, devices are employed for chip scanning.A representative application to the genotyping of a clinically relevant SNP from human samples is provided, showing the excellent features achieved. Consumer electronic devices are able to register sensitive precise measurements in terms of signal-to-noise ratios, image resolution, and scan-to-scan reproducibility. The integrated DNA-based method lead a low detection limit (100 genomic DNA copies), reproducible (variation <15%), high specificity (genotypes validated by reference method), and cheap assays (<10 €/test). The underlying challenge is the reliable implementation into minimal-specialized clinical laboratories, incorporating additional advantages, such as user-friendly interface, low cost, and connectivity for telemedicine needs.
Collapse
Affiliation(s)
- Luis Antonio Tortajada-Genaro
- Chemistry Department, Universitat Politècnica de València, Valencia, Spain.
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Valencia, Spain.
| |
Collapse
|
9
|
|
10
|
Phuong Ta L, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV. Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int J Pharm 2021; 597:120342. [PMID: 33545291 DOI: 10.1016/j.ijpharm.2021.120342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Besides viability protection, a sufficiently prolonged gastrointestinal retention of probiotics has emerged as critically important in improving the functional effectiveness of gastrointestinal delivery of these microorganisms. In this work, we formulated pure, resistant starch-reinforced and chitosan-coated alginate microparticles using an electrospray technique and evaluated their performance as mucoadhesive probiotic formulations for gastrointestinal delivery. In addition, we designed and successfully validated a novel experimental set-up of in vitro wash-off mucoadhesion test, using a portable and low-cost USB microscope for fluorescence imaging. In our test, pure chitosan microparticles (positive control) exhibited the greatest mucoadhesive property, whereas the alginate-resistant starch ones (negative control) were the least retentive on a gastric mucosa. These electrosprayed formulations were spherically shaped, with a size range of 30-600 µm (60-1300 µm with chitosan coating). Moreover, model probiotic Lactobacillus plantarum loaded in alginate-starch formulations was better protected against simulated gastric conditions than in alginate ones, but not better than in the chitosan-coated ones.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom; Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Erika Bujna
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Szilárd Kun
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom.
| |
Collapse
|
11
|
Zhang W, Liu K, Zhang P, Cheng W, Zhang Y, Li L, Yu Z, Chen M, Chen L, Li L, Zhang X. All-in-one approaches for rapid and highly specific quantifcation of single nucleotide polymorphisms based on ligase detection reaction using molecular beacons as turn-on probes. Talanta 2020; 224:121717. [PMID: 33378999 DOI: 10.1016/j.talanta.2020.121717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Rapid, simple, specific and sensitive approaches for single nucleotide polymorphisms (SNPs) detection are essential for clinical diagnosis. In this study, all-in-one approaches, consisting of the whole detection process including ligase detection reaction (LDR) and real time quantitative polymerase chain reaction performed in one PCR tube by a one-step operation on a real-time PCR system using molecular beacon (MB) as turn-on probe, were developed for rapid, simple, specific and sensitive quantifcation of SNPs. High specificity of the all-in-one approach was achieved by using the LDR, which employs a thermostable and single-base discerning Hifi Taq DNA ligase to ligate adjacently hybridized LDR-specific probes. In addition, a highly specific probe, MB, was used to detect the products of all-in-one approach, which doubly enhances the specificity of the all-in-one approach. The linear dynamic range and high sensitivity of mutant DNA (MutDNA) and wild-type DNA (WtDNA) all-in-one approaches for the detection of MutDNA and WtDNA were studied in vitro, with a broad linear dynamic range of 0.1 fM to 1 pM and detection limits of 65.3 aM and 31.2 aM, respectively. In addition, the MutDNA and WtDNA all-in-one approaches were able to accurately detect allele frequency changes as low as 0.1%. In particular, the epidermal growth factor receptor T790M MutDNA frequency in the tissue of five patients with non-small cell lung cancer detected by all-in-one approaches were in agreement with clinical detection results, indicating the excellent practicability of the developed approaches for the quantification of SNPs in real samples. In summary, the developed all-in-one approaches exhibited promising potential for further applications in clinical diagnosis.
Collapse
Affiliation(s)
- Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Kangbo Liu
- Biological Testing Room, Henan Medical Equipment Inspection Institute, Henan Medical Equipment Inspection and Testing Engineering Technology Research Center, Henan Medical Equipment Biotechnology and Application Engineering Research Center, Zhengzhou, 450000, China
| | - Pin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Linfei Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Mengmeng Chen
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, 450063, Zhengzhou, China.
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Departments of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
12
|
A highly sensitive electrochemical biosensor for protein based on a tetrahedral DNA probe, N- and P-co-doped graphene, and rolling circle amplification. Anal Bioanal Chem 2020; 412:915-922. [PMID: 31900531 DOI: 10.1007/s00216-019-02314-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
A tetrahedral DNA probe can effectively overcome the steric effects of a single-stranded probe to obtain well-controlled density and minimize nonspecific adsorption. Herein, a highly sensitive electrochemical biosensor is fabricated for determination of protein using a tetrahedral DNA probe and rolling circle amplification (RCA). N- and P-co-doped graphene (NP-rGO) is prepared, and AuNPs are then electrodeposited on it for DNA probe immobilization. Benefitting from the synergistic effects of the excellent electrical conductivity of NP-rGO, the stability of the tetrahedral DNA probe and the signal amplification of RCA, the biosensor achieves a low limit of 3.53 × 10-14 M for thrombin and a wide linear range from 1 × 10-13 to 1 × 10-7 M. This study provides a sensitive and effective method for the detection of protein in peripheral biofluids, and paves the way for future clinical diagnostics and treatment of disease. Graphical abstract.
Collapse
|