1
|
Zhang L, Chen H, Sun B, Wang T, Zhang Z, Xiong G. Magnetic-responsive sensors based on polydopamine macromolecules for highly sensitive detection of trace food colorant residues. Int J Biol Macromol 2024; 280:135609. [PMID: 39278431 DOI: 10.1016/j.ijbiomac.2024.135609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
As a kind of unique biomimetic macromolecule, polydopamine (PDA) have prominent in-situ reduction ability and interfacial adhesion. In this work, combined with in-situ reduction ability of PDA and excellent magnetic response performance of nickel foam (NF), a strategy was designed to fabricate a series of NF@PDA@AgNPs as magnetic-responsive surface enhancement Raman scattering (SERS) substrates for highly sensitive Rhodamine B (RhB) detection in chili powder. With crystal violet (CV) as probe molecule, the detection limit of SERS substrate could achieve 10-10 M, and the enhancement factor was as high as to 2.22 × 107. In addition, the NF@PDA@AgNPs SERS substrates showed excellent magnetic separation efficiency, good SERS uniformity and storage stability. More importantly, these substrates could achieve highly efficient collection and sensitive detection of RhB residues in chili powder by magnetic adsorption method, and the detection of limit was as low as to be 10-6 g/g. These NF@PDA@AgNPs substrates would be a great prospect for rapid and efficient pernicious contaminant detection in the chemical and biological fields.
Collapse
Affiliation(s)
- Lingzi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongzhan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Binbin Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tangchun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guirong Xiong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
2
|
Luo M, Qin L, Tao J, Gao X, Zhang T, Kang SZ, Li X. Selective surface enhanced Raman detection and effective photocatalytic degradation of sulfonamides antibiotic based on a flexible three-dimensional chitosan/carbon nitride/silver substrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132131. [PMID: 37536157 DOI: 10.1016/j.jhazmat.2023.132131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
The prevalence of sulfonamide residues in aquatic environments poses serious environmental risks, and the sensitive detection and effective degradation of sulfonamides have attracted widespread attention. Here, the environmentally friendly chitosan (CS)/carbon nitride (CN) with three-dimensional porous structure is fabricated by freeze-drying method, and subsequently a new bifunctional flexible substrate (CS/CN/Ag) is prepared by anchoring of small sized AgNPs (6 ∼ 12 nm) on CS/CN. Importantly, the CS/CN/Ag substrate shows high adsorption capacity (∼ 83.06%) for sulfamethoxazole (SMX) solution within 20 mins and the limit of detection can be as low as 7.46 × 10-9 mol·L-1 with an enhancement factor of 3.3 × 105. Also, the CS/CN/Ag substrate displays highly selective for surface-enhanced Raman spectroscopy (SERS) detection of sulfonamides and also shows excellent SERS response for SMX in hospital wastewater samples. In addition, the photocatalytic degradation efficiency of SMX could reach as high as 99.22% within 20 mins of irradiation and the CS/CN/Ag still maintains outstanding photocatalytic performance after six cycles. Moreover, the Ag content in the CS/CN/Ag substrate is only 2.35%, and also the CS/CN/Ag exhibits good uniformity, repeatability, recyclability and stability. Therefore, this flexible and cost-effectively substrate of CS/CN/Ag shows great potential for the simultaneous SERS detection and photocatalytic degradation of pollutants in actual wastewater samples.
Collapse
Affiliation(s)
- Man Luo
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xue Gao
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Taiyang Zhang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
3
|
Sun C, Ye L, Wang L, Hu Z, Ding J. Surface-enhanced Raman scattering of a gold core-silver shell-sponge substrate for detection of thiram and diquat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4645-4655. [PMID: 37665316 DOI: 10.1039/d3ay00922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aiming at the difficulty of traditional pesticide sampling, a low-cost and convenient flexible surface enhanced Raman scattering (SERS) gold core-silver shell-sponge (Au-Ag-sponge) substrate was synthesized by chemical reduction. The SERS substrate consisted of Au-AgNPs and a melamine sponge. The sponge had a rich open pore structure, which could well "capture" Au-AgNPs, generating a large number of "hot spots". The SERS enhancement activity of the flexible substrate was characterized with rhodamine 6G (R6G) Raman probe molecules. The substrate showed good activity to 10-12 M rhodamine 6G with an enhancement factor (EF) of 7.72 × 106. Applying this substrate to the qualitative and quantitative detection of pesticide residues, the results showed that the Raman intensity was well related to the concentration of pesticide solution with the range of 0.1-10 mg L-1 of thiram and 1-10 mg L-1 of diquat. Furthermore, the substrate was analyzed by finite difference time domain (FDTD) simulation and the results were in good agreement with the experimental results. The reason for the difference in Raman signals of pesticide molecules on the same substrate was the different binding modes of Au-AgNPs on the sponge. Finally, we pointed out the advantages of flexible substrates in the field of pesticide residues, as well as future opportunities and challenges.
Collapse
Affiliation(s)
- Chao Sun
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Li Ye
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Lizheng Wang
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Zhiming Hu
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Jianjun Ding
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| |
Collapse
|
4
|
Tian L, Chen C, Gong J, Han Q, Shi Y, Li M, Cheng L, Wang L, Dong B. The Convenience of Polydopamine in Designing SERS Biosensors with a Sustainable Prospect for Medical Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:4641. [PMID: 37430555 PMCID: PMC10223239 DOI: 10.3390/s23104641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Tian
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Cong Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Jing Gong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Qi Han
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Liang Cheng
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
6
|
Bai F, Dong J, Wang T, Qu J, Zhang Z. Controllable assembly of high sticky and flexibility surface-enhanced Raman scattering substrate for on-site target pesticide residues detection. Food Chem 2022; 405:134794. [DOI: 10.1016/j.foodchem.2022.134794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
7
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
8
|
Injectable shape memory hydroxyethyl cellulose/soy protein isolate based composite sponge with antibacterial property for rapid noncompressible hemorrhage and prevention of wound infection. Int J Biol Macromol 2022; 217:367-380. [PMID: 35839954 DOI: 10.1016/j.ijbiomac.2022.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Uncontrollable hemorrhage and subsequent wound infection are severe threats to life, especially for the deep noncompressible massive bleeding. However, traditional hemostatic materials are ineffective for extreme bleeding and subsequent wound infection. Here, we prepared an injectable shape memory hydroxyethyl cellulose/soy protein isolate based composite sponge (EHSS) for rapid noncompressible hemorrhage and prevention of wound infection. The nano silver (AgNPs)-loaded shape memory sponge (EHP@Ag) was fabricated by mussel-inspired polydopamine coating EHSS sponge, then reducing and immobilizing AgNPs in situ. The EHP@Ag sponges showed rapid blood-triggered shape recovery speed, which is beneficial for administering noncompressible hemorrhage. The results of the hemostatic experiment in vivo demonstrated that EHP@Ag sponge exhibited a desirable hemostasis effect (hemostasis time: 22.75 ± 3.86 s, blood loss: 285.25 ± 24.93 mg) compared to the commercial gelatin sponge (hemostasis time: 49.25 ± 3.30 s, blood loss: 755.50 ± 24.45 mg). Meanwhile, the EHP@Ag sponge has an efficient antibacterial property. Furthermore, the antibacterial experiment in vivo showed that the EHP@Ag sponges could kill bacteria effectively and reduce the bacteria-induced inflammatory response. In summary, the shape memory sponges can quickly control bleeding and avoid bacterial infection, which shows great potential for clinical application as a multifunctional hemostatic agent.
Collapse
|
9
|
Dong J, Wang T, Xu E, Bai F, Liu J, Zhang Z. Flexible Hydrophobic CFP@PDA@AuNPs Stripes for Highly Sensitive SERS Detection of Methylene Blue Residue. NANOMATERIALS 2022; 12:nano12132163. [PMID: 35807996 PMCID: PMC9267967 DOI: 10.3390/nano12132163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023]
Abstract
Considering the inherent hydrophilic and porous nature of paper, the rapid absorption and diffusion of aqueous analyte solutions on paper-based SERS substrates may severely affect the Raman detection sensitivity and accuracy in the detection of target molecules. In this work, a series of hydrophobic CFP@PDA@AuNPs stripes were obtained through in situ synthesizing of gold nanoparticles (AuNPs) on a polydopamine (PDA)-decorated cellulose filter paper (CFP) and functionalized with perfluorodecanethiol (PFDT). When the SERS performance of the substrates was examined using 4-ATP, the hydrophobic CFP@PDA@AuNPs substrate showed superior sensitivity, reproducibility and stability due to the hydrophobic enrichment effect, with the detection limit decreasing to 10−9 M and the enhancement factor as high as 2.55 × 107. More importantly, it was feasible to apply the hydrophobic paper substrate as an excellent SERS sensor to detect methylene blue (MB) residues in lake water in a highly sensitive manner. The lowest detectable limit of MB was 100 nM, and it showed a low relatively standard deviation (RSD) value of 5.28%. Hydrophobic CFP@PDA@AuNPs stripes may serve as excellent sensors for target molecule detection and have tremendous potential in food security, and environmental and chemical detection.
Collapse
Affiliation(s)
- Jinchen Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Tangchun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Enze Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Feng Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
| | - Jun Liu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (J.L.); (Z.Z.); Tel.: +86-0531-89631632 (Z.Z.)
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.D.); (T.W.); (E.X.); (F.B.)
- Correspondence: (J.L.); (Z.Z.); Tel.: +86-0531-89631632 (Z.Z.)
| |
Collapse
|
10
|
Kara F, Aksoy EA, Aksoy S, Hasirci N. Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles with potential antibacterial properties are included in biomaterials for the production of medical devices, which are used for diagnoses or treatment purposes. The aim of the current study was coating the polyurethane (PU) films with silver nanoparticles (AgNPs) due to their antibacterial efficacy. PU films were first modified by chitosan (CH), treated with AgNO3 to let CH chelate with silver ions, and then treated with vitamin-C (vit C) or glucose (Glu) to reduce the adsorbed ions to atomic silver to form AgNPs. The surfaces of the films were examined by ATR-FTIR, XPS, XRD, and SEM. Chemical bond formation between CH and Ag ions and AgNPs were determined by ATR-FTIR. Meanwhile, XPS and SEM analyses proved the presence of reduced metallic silver and nanoparticles on the film surfaces, respectively. According to the SEM analyses, a homogeneous distribution of AgNPs, with sizes 99–214 nm and 37–54 nm, on the film surfaces were obtained depending on Glu or vit C reduction, respectively. The films presented excellent antibacterial performance against Gram positive Staphylococcus epidermidis ( S. epidermidis). These results suggested that the mentioned green technology can be easily applied to obtain AgNP coated polymeric surfaces with very high antibacterial efficacy. Although there are some studies dealing with AgNP formation on PU sponges or fibers, to the best of our knowledge, this is the first study showing AgNP formation on the CH conjugated PU films.
Collapse
Affiliation(s)
- Filiz Kara
- Department of Industrial Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey
| | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Polymer Science and Technology, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Serpil Aksoy
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Near East University, Tissue Engineering and Biomaterial Research Center, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
11
|
Xu F, Shang W, Xuan M, Ma G, Ben Z. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram. CHEMOSPHERE 2022; 288:132635. [PMID: 34687679 DOI: 10.1016/j.chemosphere.2021.132635] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A SERS substrate FP/Ag/ZIF-8 composed of filter paper (FP), silver nanoparticles (AgNPs) and zeolitic imidazolate framework (ZIF-8) film arranged in a layered structure was developed for sensitive detection of pesticide thiram in various samples. Roles of these components in analyte adsorption and Raman signal enhancement were studied using a pesticide intermediate 4-Aminothiophenol (4-ATP) as the probe. The substrate showed high adsorption and optimized SERS response with thick metal organic framework (MOF) coating (125 nm), which is different from previous reported plasmonic particle-MOF composite substrate, where thinnest MOF coating produced the strongest SERS signal. Detection limit for 4-ATP improved 1000-fold on FP/Ag/ZIF-8 (3 pM) compared with that on FP/Ag (3 nM). Importantly, the FP/Ag/ZIF-8 with porous and flexible property can efficiently capture pesticide thiram in different real samples using soaking, filtration or swabbing operation. The subsequent SERS detection of thiram showed advantages of low detection limit (soaking, LOD: 0.04 nM in lake water), fast detection (filtration, within 1 min in peach juice) and suitable for curve surface analysis (swabbing, LOD: 0.1 ng/cm2 on apple peel), respectively. The substrate also displayed good reproducibility, high stability and size-selective response for thiram detection. Such a layered plasmonic particle/MOF hybrid may hold great promise for toxicant analysis in environment and food.
Collapse
Affiliation(s)
- Fugang Xu
- College of Chemistry and Chemical Engineering & Analytical and Testing Centre, Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China.
| | - Wenjuan Shang
- College of Chemistry and Chemical Engineering & Analytical and Testing Centre, Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Mengren Xuan
- College of Chemistry and Chemical Engineering & Analytical and Testing Centre, Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Guangran Ma
- College of Chemistry and Chemical Engineering & Analytical and Testing Centre, Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Zixiang Ben
- College of Chemistry and Chemical Engineering & Analytical and Testing Centre, Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
12
|
From lab to field: Surface-enhanced Raman scattering-based sensing strategies for on-site analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Yu F, Huang H, Shi J, Liang A, Jiang Z. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119738. [PMID: 33812234 DOI: 10.1016/j.saa.2021.119738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As one of the essential trace elements in metabolism, iodine is crucial to maintain the normal physiological functions. Therefore, based on health and environmental protection, it is very important to realize sensitive detection of iodide ion. Herein, we developed a simple, rapid and sensitive method for the determination of iodide ion. Trypsin was used as an ideal template for the synthesis of gold nanoflower sol (AuNFs) with anisotropic surface structure and good stability. It exhibits highly active surface enhanced Raman scattering (SERS) effect and can be used as facile SERS sol substrate. The TMBox generated by the catalytic oxidation reaction of TMB-chloramine T-iodide ion is used as the SERS probe. The enhanced SERS signal intensity is linearly related to the iodide ion with high sensitivity. In addition, TMB has fluorescence effect, and the colored TMBox can produce RRS signal due to polymerization. Based on this, a quad-mode detection method of SERS, RRS, fluorescence and colorimetry for quantitative detection of trace iodide ions was established, and this method can be applied to the detection of iodide ions in natural water and drinking water.
Collapse
Affiliation(s)
- Faxin Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Hanbing Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Jinling Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
14
|
Bai F, Dong J, Qu J, Zhang Z. Construction of flexible, transparent and mechanically robust SERS-active substrate with an efficient spin coating method for rapid in-situtarget molecules detection. NANOTECHNOLOGY 2021; 32:385501. [PMID: 34107456 DOI: 10.1088/1361-6528/ac09ab] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Flexible, transparent and mechanically robust surface enhanced Raman scattering (SERS)-active substrates is currently the most attractive research focus in the field of Raman detection, and also a powerful analysis and identification technique in the biological research. Herein, we introduced a low-cost and large-scale method to fabricate flexible and transparent AgNPs/WPU plasmonic metafilm with monolayer-island phase nanostructures based on silver nanoparticles (AgNPs) and waterborne polyurethane emulsion (WPU) film. The obtained AgNPs/WPU plasmonic metafilm demonstrated excellent SERS sensitivity, signal uniformity and reproducibility, and the SERS substrates could still maintain excellent stability even after being bent or stretched over 100 cycles. The detection concentration was as low as 10-9M with 4-Mercaptobenzoic acid (4-MBA) as probe molecule, and the enhancement factor was high to 2.2 × 107. More importantly, the flexibility and adhesivity of AgNPs/WPU plasmonic metafilm could be directly conformal coverage on the apple surface forin situdetection of thiram residue, and the detection limit was as low as 9.0165 ng cm-2. This versatile AgNPs/WPU plasmonic metalfilm would be a promising SERS substrate for the detection of pesticide residue in chemical and biological applications.
Collapse
Affiliation(s)
- Feng Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jinchen Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbo Qu
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
15
|
Zhang H, Jin Y, Chi C, Han G, Jiang W, Wang Z, Cheng H, Zhang C, Wang G, Sun C, Chen Y, Xi Y, Liu M, Gao X, Lin X, Lv L, Zhou J, Ding Y. Sponge particulates for biomedical applications: Biofunctionalization, multi-drug shielding, and theranostic applications. Biomaterials 2021; 273:120824. [PMID: 33894401 DOI: 10.1016/j.biomaterials.2021.120824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Cheng Chi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenshuang Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Gang Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yun Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yilong Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Mengting Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xie Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xiujun Lin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
16
|
Forbes TP, Krauss ST, Gillen G. Trace Detection and Chemical Analysis of Homemade Fuel-Oxidizer Mixture Explosives: Emerging Challenges and Perspectives. Trends Analyt Chem 2020; 131:10.1016/j.trac.2020.116023. [PMID: 34135538 PMCID: PMC8201619 DOI: 10.1016/j.trac.2020.116023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chemical analysis of homemade explosives (HMEs) and improvised explosive devices (IEDs) remains challenging for fieldable analytical instrumentation and sensors. Complex explosive fuel-oxidizer mixtures, black and smokeless powders, flash powders, and pyrotechnics often include an array of potential organic and inorganic components that present unique interference and matrix effect difficulties. The widely varying physicochemical properties of these components as well as external environmental interferents and background challenge many sampling and sensing modalities. This review provides perspective on these emerging challenges, critically discusses developments in sampling, sensors, and instrumentation, and showcases advancements for the trace detection of inorganic-based explosives.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Shannon T. Krauss
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Greg Gillen
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| |
Collapse
|
17
|
To KC, Ben-Jaber S, Parkin IP. Recent Developments in the Field of Explosive Trace Detection. ACS NANO 2020; 14:10804-10833. [PMID: 32790331 DOI: 10.1021/acsnano.0c01579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Explosive trace detection (ETD) technologies play a vital role in maintaining national security. ETD remains an active research area with many analytical techniques in operational use. This review details the latest advances in animal olfactory, ion mobility spectrometry (IMS), and Raman and colorimetric detection methods. Developments in optical, biological, electrochemical, mass, and thermal sensors are also covered in addition to the use of nanomaterials technology. Commercially available systems are presented as examples of current detection capabilities and as benchmarks for improvement. Attention is also drawn to recent collaborative projects involving government, academia, and industry to highlight the emergence of multimodal screening approaches and applications. The objective of the review is to provide a comprehensive overview of ETD by highlighting challenges in ETD and providing an understanding of the principles, advantages, and limitations of each technology and relating this to current systems.
Collapse
Affiliation(s)
- Ka Chuen To
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Sultan Ben-Jaber
- Department of Science and Forensics, King Fahad Security College, Riyadh 13232, Saudi Arabia
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| |
Collapse
|
18
|
Liu W, Song Z, Zhao Y, Liu Y, He X, Cui S. Flexible porous aerogels decorated with Ag nanoparticles as an effective SERS substrate for label-free trace explosives detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4123-4129. [PMID: 32766632 DOI: 10.1039/d0ay00771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sensitive and reliable methods for explosives detection are of significance in homeland security due to the serious threats of explosives in terrorist attack events. However, such suitable sensors are still rare. Herein, porous silica aerogels decorated with silver nanoparticles (SiO2-Ag hybrids) were prepared and applied as a flexible SERS substrate for ultrasensitive explosives detection. It is worth noting that the silica aerogel we prepared had good flexibility compared with traditional silica aerogels, which effectively avoided structural damage during sample collection. Also, because of excellent adsorption performance provided by the silica aerogel, trace explosive 3-nitro-1,2,4-triazol-5-one (NTO) could be enriched and realized by label-free detection. Combined with the plasma enhancement provided by Ag NPs decorated around these porous aerogels, the limit of detection for explosive NTO was as low as 7.94 × 10-10 M. As far as we know, this SiO2-Ag hybrid SERS substrate was firstly used for the detection of explosives. It presented good sensitivity and reproducibility for analyte sensing. Most importantly, this is a label-free method for trace explosives detection and has a good application prospect in homeland security.
Collapse
Affiliation(s)
- Wei Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China. and Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Zihao Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China. and Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yifan Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China. and Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China. and Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Xuan He
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China. and Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China. and Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
19
|
Ambroziak R, Krajczewski J, Pisarek M, Kudelski A. Immobilization of Cubic Silver Plasmonic Nanoparticles on TiO 2 Nanotubes, Reducing the Coffee Ring Effect in Surface-Enhanced Raman Spectroscopy Applications. ACS OMEGA 2020; 5:13963-13972. [PMID: 32566863 PMCID: PMC7301603 DOI: 10.1021/acsomega.0c01356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates prepared by immobilizing silver cubic nanoparticles (Ag CNPs) on titanium dioxide nanotubes (TiO2 NTs) were used for investigations of the "coffee ring" (CR) effect and its impact on spatial reproducibility of measured Raman signals in comparison with flat surfaces (Ti and Si) where the CR effect is usually significant. The immobilization of nanoparticles from drops, which is a very simple technique, usually does not permit a homogeneous distribution of deposited NPs because there is significant accumulation of the material at the boundary of the drying area. Our proposed SERS substrates effectively reduced the CR effect through the use of well-ordered nanostructures where a smaller number of Ag CNPs were transferred to the boundary region. It was not only the surface morphology that was important but also the physicochemical properties of TiO2 NTs, such as wettability. The wettability of the prepared samples was determined by measuring the static water contact angle (WCA), and the chemical composition near the boundary of the drying area was studied using Auger electron spectroscopy. The morphology of the substrates obtained was characterized using scanning electron microscopy. Our studies showed that reducing the coffee ring effect increased the spatial reproducibility of the measured SERS signal in the area of the deposited CNPs. Therefore, the platforms obtained may be very useful in commercial SERS applications.
Collapse
Affiliation(s)
- Robert Ambroziak
- Faculty
of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| | - Jan Krajczewski
- Faculty
of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| | - Marcin Pisarek
- Institute
of Physical Chemistry, Polish Academy of Sciences, Laboratory of Surface
Analysis, Kasprzaka Str. 44/52, 01-224 Warsaw, Poland
| | - Andrzej Kudelski
- Faculty
of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Elbasuney S, El-Sharkawy YH, El-Sayyad GS, Gobara M. Surface modified colloidal silica nanoparticles: Novel aspect for complete identification of explosive materials. Talanta 2020; 211:120695. [PMID: 32070581 DOI: 10.1016/j.talanta.2019.120695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 02/04/2023]
Abstract
Terrorism by means of explosives has become a crucial threat. Nanoparticles with distinctive properties can offer novel aspects for instant detection of explosive materials. Common explosives are organic compounds that contain nitro group (NO2) along with carbon and hydrogen elements. This study demonstrates complete identification of nitramine explosives (RDX & HMX) using colloidal silica nanoparticles. Sustainable fabrication of colloidal silica was conducted via hydrothermal processing technique. Explosive identification involves a digestion of the tested material using strong acid. The digestion process results in the development of nitro group and corresponding formaldehyde segment. The identification of the nitro group was performed using colloidal silica nanoparticles functionalized with secondary amine to develop a characteristic dark blue colour. Simultaneous identification of formaldehyde segment was performed using colloidal silica functionalized with aromatic phenol to develop a red colour. This robust explosive detection technology can find wide applications on site where instant identification to assess potential threat is a crucial demand. Thanks to hydrothermal processing, sustainable fabrication and surface modification of colloidal silica particles can be obtained.
Collapse
Affiliation(s)
- Sherif Elbasuney
- Head of Nanotechnology Research Center, Military Technical College, Kobry El-Kobba, Cairo, Egypt.
| | - Yasser H El-Sharkawy
- Head of Department of Biomedical Engineering, Military Technical Collage, Kobry Elkoba, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egypt; Chemical Engineering Department, Military Technical College, Kobry El-Kobba, Cairo, Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College, Kobry El-Kobba, Cairo, Egypt
| |
Collapse
|
21
|
Zhang L, Liu J, Zhou G, Zhang Z. Controllable In-Situ Growth of Silver Nanoparticles on Filter Paper for Flexible and Highly Sensitive SERS Sensors for Malachite Green Residue Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E826. [PMID: 32357438 PMCID: PMC7712161 DOI: 10.3390/nano10050826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
In this work, a series of highly flexible and sensitive surface-enhanced Raman scattering (SERS) substrates were fabricated by the in-situ growth of silver nanoparticles (AgNPs) on polydopamine (PDA) templated filter papers (FPs), based on mussel-inspired surface chemistry. The obtained FP@PDA@AgNPs strips exhibited high sensitivity and reproducibility with Rhodamine 6G (R6G) probe molecules, with a calculated detection limit of approximately 10-10 M. More critically, these FP@PDA@AgNPs strips could be used as outstanding flexible SERS sensors to quickly collect and detect malachite green (MG) residues on fish scales, crab shells and shrimp skins by a swabbing extraction method. The detection limits for MG residues were calculated to be approximately as low as 0.04635 pg/cm2, 0.06952 pg/cm2 and 0.09270 pg/cm2, respectively. This facile and efficient strategy could to be utilized as a universal approach to fabricating a variety of flexible, cheap and portable SERS sensors for surface contamination analysis, and has great potential in the environmental scientific analysis and food safety monitoring fields.
Collapse
Affiliation(s)
- Lingzi Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
| | - Jun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
| | - Zhiliang Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.Z.); (G.Z.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
22
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
23
|
Liu J, Si T, Zhang L, Zhang Z. Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1331. [PMID: 31533241 PMCID: PMC6781073 DOI: 10.3390/nano9091331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
As an important sort of dithiocarbamate bactericide, thiram has been widely used for fruits, vegetables and mature crops to control various fungal diseases; however, the thiram residues in the environment pose a serious threat to human health. In this work, silver nanoparticles (AgNPs) were grown in-situ on cotton swab (CS) surfaces, based on the mussel-inspired polydopamine (PDA) molecule and designed as highly sensitive surface-enhanced Raman scattering (SERS) swabs for the conformal rapid detection of bactericide residues. With this strategy, the obtained CS@PDA@AgNPs swabs demonstrated highly sensitive and reproducible Raman signals toward Nile blue A (NBA) probe molecules, and the detection limit was as low as 1.0 × 10-10 M. More critically, these CS@PDA@AgNPs swabs could be served as flexible SERS substrates for the conformal rapid detection of thiram bactericides from various fruit surfaces through a simple swabbing approach. The results showed that the detection limit of thiram residues from pear, grape and peach surfaces was approximately down to the level of 0.12 ng/cm2, 0.24 ng/cm2 and 0.15 ng/cm2 respectively, demonstrating a high sensitivity and excellent reliability toward dithiocarbamate bactericides. Not only could these SERS swabs significantly promote the collection efficiency of thiram residues from irregular shaped matrices, but they could also greatly enhance the analytical sensitivity and reliability, and would have great potential for the on-site detection of residual bactericides in the environment and in bioscience fields.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Tiantian Si
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lingzi Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|