1
|
Lv J, Wu X, Lin H, Feng Q, Lan W, Li M, Chen Z, Li L, Ding S, Wang Y, Wei J, Duan Y, He J. The MoS 2/rGO embed in macro-porous PAN gel as a novel DGT binding phase for the rapid and accurate detection of trace Hg(II). Talanta 2025; 283:127124. [PMID: 39522282 DOI: 10.1016/j.talanta.2024.127124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The development of binding gels with a fast uptake rate, high capacity, and good selectivity could be beneficial for trace Hg(II) detection based on the DGT technology. In this study, a novel PAN@MoS2/rGO-DGT was assembled by using the nanocomposite embedded in polyacrylonitrile membrane (PAN@MoS2/rGO) as the binding phase. The interior regular finger-like macropore of the gel provided a convenient channel for the rapid mass diffusion of Hg(II), and the abundant sulfur offered the paramount driving force for trapping Hg(II). These endowed the PAN@MoS2/rGO with an impressive reaction rate, capacity, and selectivity toward Hg(II) and featured the PAN@MoS2/rGO-DGT with excellent diffusion rate (D) and adaptability in the complex matrixes across a wide range of pH, ion strength, common cations. However, the uptake of Hg(II) was influenced by the high content of chloride, thus a calibrated model was established based on the chloride concentration to correct the accumulated mass and D. After that, the high accuracy of this method was confirmed through the good consistency between Hg(II) concentration assessed by DGT and in bulk solution when the DGT was deployed to the river water, seawater, and domestic wastewater at the static and dynamic Hg(II) concentration. Field trials in the prawn farming seawater and lake water also showed a negligible deviation of Hg(II) content from the DGT and the conventional method, acquiring the actual Hg(II) level as 1.07-3.69 ng/L. The findings highlighted the application potential of macropore PAN gel hybrid with nanocomposite as a promising binding phase for trace Hg(II) or other pollutant detection.
Collapse
Affiliation(s)
- Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Xianghua Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China.
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Wenlu Lan
- Marine Environmental Monitoring Centre of Guangxi, Beihai, China
| | - Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Shiming Ding
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jie He
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Yin H, Yao H, Yuan W, Lin CJ, Fu X, Yin R, Meng B, Luo J, Feng X. Determination of the Isotopic Composition of Aqueous Mercury in a Paddy Ecosystem Using Diffusive Gradients in Thin Films. Anal Chem 2023; 95:12290-12297. [PMID: 37605798 DOI: 10.1021/acs.analchem.3c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Measuring the isotopic composition of Hg in natural waters is challenging due to the ultratrace level of aqueous Hg (ng L-1). At least 5 ng of Hg mass is required for Hg isotopic analysis. Given the low Hg concentration in natural waters, a large volume of water (>10 L) is typically needed. The conventional grab sampling method is time-consuming, laborious, and prone to contamination during transportation and preconcentration steps. In this study, a DGT (diffusive gradients in thin films) method based on aminopropyl and mercaptopropyl bi-functionalized SBA-15 nanoparticles was developed and extended to determine the concentration and isotopic composition of aqueous Hg for the first time. The results of laboratory analysis showed that Hg adsorption by DGT induces ∼ -0.2‰ mass-dependent fractionation (MDF) and little mass-independent fractionation (MIF). The magnitude of MDF exhibits a dependence on the diffusion-layer thickness of DGT. Since Hg-MDF can occur in a broad range of environmental processes, monitoring the δ202Hg of aqueous Hg using the DGT method should be performed with caution. Field results show consistent MIF signatures (Δ199Hg) between the DGT and conventional grab sampling method. The developed DGT method serves as a passive sampling method that effectively characterizes the MIF of Hg in waters to understand the biogeochemical cycle of Hg at contaminated sites.
Collapse
Affiliation(s)
- Hongqian Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Atasoy M. Development of a New Sensitive Method for Lead Determination by Platinum-Coated Tungsten-Coil Hydride Generation Atomic Absorption Spectrometry. ACS OMEGA 2023; 8:22866-22875. [PMID: 37396250 PMCID: PMC10308594 DOI: 10.1021/acsomega.3c01856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
A novel very sensitive and rapid analytical method was improved where gaseous lead formed was transported to and trapped on an externally heated platinum-coated tungsten-coil atom trap for in situ preconcentration. The analytical performance of the developed method with the graphite furnace atomic absorption spectrometry (GFAAS) method was compared. All critical parameters affecting the performance of both methods were optimized. The limit of quantitation (LOQ) was found as 11.0 ng L-1 and the precision was 2.3% in terms of percent relative standard deviation (RSD%). Characteristic concentration (Co) of the developed trap method was indicating a 32.5-fold enhancement in sensitivity compared to the GFAAS method. In order to investigate the surface morphology of the W-coil, scanning electron microscope-energy-dispersive X-ray (SEM-EDS) analyzes were performed. The accuracy of the trap method was tested by certified reference materials: NIST SRM 1640a (the elements in natural water) and DOLT:5 (dogfish liver). Interferences from other hydride-forming elements were investigated. Application of the trap method was demonstrated by the analysis of some drinking water and fish tissue samples. The t test was applied to drinking water samples, and the results indicated that there was no statistically significant error.
Collapse
|
4
|
Angyus SB, Senila M, Frentiu T, Ponta M, Frentiu M, Covaci E. In-situ Diffusive Gradients in thin-films passive sampling coupled with ex-situ small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry as green and white method for the simultaneous determination of labile species of toxic elements in surface water. Talanta 2023; 259:124551. [PMID: 37075518 DOI: 10.1016/j.talanta.2023.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
This study presents for the first time the coupling between in-situ Diffusive Gradient in Thin-film (DGT) passive sampling technique and ex-situ small-sized instrumentation based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry (SSETV-μCCP-OES) for the simultaneous determination of Cd, Pb, Cu, Zn and Hg in surface water. Unique features of the DGT-SSETV-μCCP-OES are low power and low Ar consumption for plasma generation (15 W, 150 mL min-1) and significant improvement of the detection limits following DGT passive sampling. The new method was validated in terms of river water analysis in comparison with graphite furnace atomic absorption spectrometry and thermal decomposition atomic absorption spectrometry. Combining the abilities of preconcentration by in-situ Chelex-DGT passive sampling with plasma microtorch equipped with a low resolution microspectrometer provided multielemental simultaneous determination with detection limits of (μg L-1) 0.01 (Cd, Zn and Hg), 0.02 (Cu) and 0.07 (Pb) in water, at least one order of magnitude better than using grab sampling without preconcentration. It was possible the quantification of labile fraction of priority hazardous metals (Cd, Pb) in river water below the instrumental limits of detection (μg L-1) of 0.12 and 0.80 obtained in SSETV-μCCP-OES without DGT sampling. The precision of the method was in the range 15.3-22.4% (combined uncertainty), while the accuracy was 95-103% and trueness of 27-33% (expanded uncertainty, k = 2). The DGT-SSETV-μCCP-OES coupling proved to be an ideal and powerful tool for surface water analysis in compliance with green and white analytical chemistry concepts. The application of the RGB-12 algorithm provided very good red/green (AGREEprep)/blue/white scores (%) of 100/80/98/93, determined primarily by in-situ DGT passive sampling, very good detection limits and cost-effective SSETV-μCCP-OES instrumentation.
Collapse
Affiliation(s)
- Simion Bogdan Angyus
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Marin Senila
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Tiberiu Frentiu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Michaela Ponta
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Maria Frentiu
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Eniko Covaci
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Electrochemical Sensing of Pb2+ and Cd2+ Ions with the Use of Electrode Modified with Carbon-Covered Halloysite and Carbon Nanotubes. Molecules 2022; 27:molecules27144608. [PMID: 35889475 PMCID: PMC9324300 DOI: 10.3390/molecules27144608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
A novel voltammetric method for the sensitive and selective determination of cadmium and lead ions using screen-printed carbon electrodes (SPCEs) modified with carbon-deposited natural halloysite (C_Hal) and multi-walled carbon nanotubes (MWCNTs) was developed. The electrochemical properties of the proposed sensor were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), while the morphology and structure were established by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A two-factorial central composite design (CCD) was employed to select the composition of the nanocomposite modifying the electrode surface. The optimal measuring parameters of differential pulse anodic stripping voltammetry (DPASV) used for quantitative analysis were established with the Nelder–Mead simplex method. In the analytical investigation of Cd(II) and Pb(II) ions by DPASV, the MWCNTs/C_Hal/Nafion/SPCE exhibited a linear response in the concentration range of 0.1–10.0 µmol L−1 (for both ions) with a detection limit of 0.0051 and 0.0106 µmol L−1 for Pb(II) and Cd(II), respectively. The proposed sensor was successfully applied for the determination of metal ions in different natural water and honey samples with recovery values of 96.4–101.6%.
Collapse
|
6
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Reichstädter M, Gao Y, Diviš P, Ma T, Gaulier C, Leermakers M. Cysteine-modified silica resin in DGT samplers for mercury and trace metals assessment. CHEMOSPHERE 2021; 263:128320. [PMID: 33297253 DOI: 10.1016/j.chemosphere.2020.128320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Diffusive gradients in thin-films (DGT) is an in situ passive sampling technique to assess labile trace metal concentrations in different environmental matrix. The technique is consisting of a diffusive domain backed up by a resin gel that binds free metals and metal complexes that dissociate in the diffusive domain. This technique requires specific resin for special metals, for example mercury (Hg), since the classic resin (Chelex-100) gel is not applicable for Hg measurement. A simultaneous determination of Hg with other metals by the DGT was not yet reported. Two biomolecule-based resins were prepared by glutaraldehyde immobilisation of cysteine onto 3-amino-functionalised silica and 3-aminopropyl-functionalised silica, respectively. The load of functional groups on modified resins was qualitatively and quantitatively characterised. The modified resins were applied in the DGT technique and the uptake efficiency, elution efficiency, and linear accumulation of analytes of the DGT were tested. This novel DGT technique, using two cysteine-modified resins, can accumulate Hg and other metals in a broad range of pH and ionic strength in solutions. In the Belgian coastal zone (BCZ), the concentrations of Hg and other trace metals sampled by cysteine-modified resin-DGTs were similar as those by the other two DGT assemblies for Hg and other trace metals, respectively. The cysteine-modified silica resin combined the features of Chelex-100 resin and 3-mercaptopropyl silica resin and allowed simultaneous determination of labile Hg and other trace metals. The resin with a higher load of functional groups also showed higher performance in the further application in the DGT technique.
Collapse
Affiliation(s)
- Marek Reichstädter
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Brno University of Technology, Faculty of Chemistry, Purkynova 118, Brno, 621 00, Czech Republic
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Pavel Diviš
- Brno University of Technology, Faculty of Chemistry, Purkynova 118, Brno, 621 00, Czech Republic.
| | - Tianhui Ma
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Camille Gaulier
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; LASIR CNRS UMR 8516, Université de Lille, Cité Scientifique, 59655, Villeneuve D'Ascq Cedex, France
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
8
|
Diviš P, Reichstädter M, Gao Y, Leermakers M, Křikala J. Determination of Mercury in Fish Sauces by Thermal Decomposition Gold Amalgamation Atomic Absorption Spectroscopy after Preconcentration by Diffusive Gradients in Thin Films Technique. Foods 2020; 9:foods9121858. [PMID: 33322820 PMCID: PMC7764611 DOI: 10.3390/foods9121858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
The analysis of mercury in food presents a challenge for analytical chemists. Sample pre-treatment and the preconcentration of mercury prior to measurement are required, even when highly sensitive analytical methods are used. In this work, the Diffusive Gradients in Thin Films technique (DGT), combined with thermal decomposition gold amalgamation atomic absorption spectrometry (TDA-AAS), was investigated for the determination of the total dissolved mercury in fish sauces. Moreover, a new type of binding gel with Purolite S924 resin was used in DGT. Linearity assays for DGT provided determination coefficients around 0.995. Repeatability tests showed a relative standard deviation of less than 10%. pH values in the range of 3–6, as well as NaCl concentrations up to 50 g·L−1, did not affect the performance of DGT. The effective diffusion coefficient of mercury in five-fold diluted fish sauce was determined to be (3.42 ± 0.23)·10−6 cm2·s−1. Based on the 24 h deployment time of DGT, the limit of detection (LOD) for the investigated method was 0.071 µg·L−1. The proposed method, which combines DGT and TDA-AAS, allows for the analysis of fish sauces with mercury concentrations below the LOD of TDA-AAS, and significantly reduces the wear and corrosion of the TDA-AAS components.
Collapse
Affiliation(s)
- Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (M.R.); (J.K.)
- Correspondence: ; Tel.: +420-541-149-454
| | - Marek Reichstädter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (M.R.); (J.K.)
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Y.G.); (M.L.)
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Y.G.); (M.L.)
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Y.G.); (M.L.)
| | - Jakub Křikala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (M.R.); (J.K.)
| |
Collapse
|