1
|
Tang Z, Feng X, Tian H, Wang J, Qin W. Integration of glutathione disulfide-mediated extraction and capillary electrophoresis for determination of Cd(II) and Pb(II) in edible oils. Food Chem 2024; 457:140146. [PMID: 38901338 DOI: 10.1016/j.foodchem.2024.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
A novel method is introduced for extracting and enriching Cd(II) and Pb(II) from edible oils using glutathione disulfide (GSSG) as both an extractant and a phase-separation agent. The ions in the oils were initially extracted into an aqueous solution containing GSSG. After mixing the solution with acetonitrile at the appropriate volume ratio, a new phase formed, resulting in enrichment of the analytes. The experimental conditions were optimized using response surface methodology with a central composite design. Under optimal conditions, the method offered a combined enrichment factor of >660, with combined extraction efficiencies of 84.31% and 83.35% for Cd(II) and Pb(II), respectively. Finally, the method was conjugated to capillary electrophoresis to determine Cd(II) and Pb(II) in edible oil samples, with detection limits of 0.45 and 1.24 ppb, respectively. In comparison to traditional approaches, the GSSG-based method demonstrates rapidity, efficiency, and recyclability in extracting heavy metal ions from complex matrices.
Collapse
Affiliation(s)
- Zhanqiu Tang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinyi Feng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongyuan Tian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Tracking cellular transformation of As(III) in HepG2 cells by single-cell focusing/capillary electrophoresis coupled to ICP-MS. Anal Chim Acta 2022; 1226:340268. [DOI: 10.1016/j.aca.2022.340268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
|
3
|
Shen S, Wang X, Niu Y. Multi-Vortex Regulation for Efficient Fluid and Particle Manipulation in Ultra-Low Aspect Ratio Curved Microchannels. MICROMACHINES 2021; 12:mi12070758. [PMID: 34199145 PMCID: PMC8303296 DOI: 10.3390/mi12070758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
Inertial microfluidics enables fluid and particle manipulation for biomedical and clinical applications. Herein, we developed a simple semicircular microchannel with an ultra-low aspect ratio to interrogate the unique formations of the helical vortex and Dean vortex by introducing order micro-obstacles. The purposeful and powerful regulation of dimensional confinement in the microchannel achieved significantly improved fluid mixing effects and fluid and particle manipulation in a high-throughput, highly efficient and easy-to-use way. Together, the results offer insights into the geometry-induced multi-vortex mechanism, which may contribute to simple, passive, continuous operations for biochemical and clinical applications, such as the detection and isolation of circulating tumor cells for cancer diagnostics.
Collapse
Affiliation(s)
- Shaofei Shen
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| | | | - Yanbing Niu
- Correspondence: (S.S.); (Y.N.); Tel./Fax: +86-354-6287205 (S.S. & Y.N.)
| |
Collapse
|
4
|
Wu C, Wei X, Men X, Zhang X, Yu YL, Xu ZR, Chen ML, Wang JH. Two-Dimensional Cytometry Platform for Single-Particle/Cell Analysis with Laser-Induced Fluorescence and ICP-MS. Anal Chem 2021; 93:8203-8209. [PMID: 34077198 DOI: 10.1021/acs.analchem.1c00484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A two-dimensional cytometry platform (CytoLM) with high sensitivity and high temporal resolution is developed for single-particle and single-cell sampling and analysis. First, a Dean flow-assisted vortex capillary cell sampling (VCCS) unit confines the sample stream in curved flow and drives to focus and align the particles or cells in a small probe volume. By coupling VCCS to a laser-induced fluorescence (LIF) detector with data acquisition and processing capability, a high-throughput single-particle/cell analysis system (VCCS-LIF) was established. The particle analysis throughput of 119.42/s and a detection recovery of 78.20 ± 1.75% were achieved at a density of 9.16 × 104/mL for fluorescent particles, and the cell analysis throughput is 48.20/s at a density of 1.5 × 105/mL. Second, the CytoLM platform is constructed by hyphenating VCCS-LIF with inductively coupled plasma mass spectrometry (ICP-MS). In the analysis of HepG2 cells by Ag+ incubation and AO staining, 10,760 fluorescence bursts and 3068 MS events were observed in 240 s. Invalid signals due to undispersed cells were controlled at 3.80% for LIF and 1.01% for MS, with a proportion of effective signal of >96.20%. After peak identification and integral processing of the original data, the statistical results including peak area, height, width, and spacing are obtained concurrently and the information on concentration and elemental quantification of single cells is evaluated. CytoLM facilitates high-throughput, multi-dimensional, and multi-parameter characterization of particles and cells, and it may provide vast potential in life science analysis.
Collapse
Affiliation(s)
- Chengxin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xue Men
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|