1
|
Xiao Q, Cao H, Tu X, Pan C, Fang Y, Huang S. Unraveling the impact of tungsten disulfide quantum dots on human serum albumin conformational dynamics and fibrillation pathways: An integrated multi-spectroscopic, biochemical, and molecular docking investigation. Int J Biol Macromol 2024; 282:136917. [PMID: 39490476 DOI: 10.1016/j.ijbiomac.2024.136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Herein, the intricate molecular interplay between human serum albumin (HSA) and tungsten disulfide quantum dots (WS2 QDs) was probed using spectroscopic techniques and sophisticated molecular simulation methods. Fluorescence spectroscopy demonstrated that under physiological conditions, WS2 QDs forge a non-fluorescent ground-state complex with HSA, facilitated by hydrogen bonding and van der Waals forces, ultimately resulting in the static quenching of the protein's intrinsic fluorescence. Complementary site competition experiments and molecular docking simulations reinforced a precise 1: 1 binding stoichiometry, predominantly targeting HSA's Site I. Three-dimensional fluorescence spectroscopy revealed that WS2 QDs perturb the HSA polypeptide backbone, subtly modifying the microenvironment surrounding aromatic amino acid residues. This alteration was further corroborated by circular dichroism spectroscopy, marked by a decrease in helical content and a transition towards irregular peptide conformations. Thermal stability assays illuminated the reduced thermal resilience of the HSA - WS2 QD complex. Laser confocal microscopy coupled with thioflavin T staining yielded compelling evidence that WS2 QDs effectively inhibit amyloid fibril formation in both HSA and lysozyme, underscoring their potential as potent anti-amyloidogenic agents. This comprehensive study offers pivotal insights into multifaceted impact of WS2 QDs on protein structure and function, thereby expanding their horizon of potential applications within the burgeoning field of nanomedicine.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huishan Cao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Xincong Tu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Chunyan Pan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
2
|
Gao N, Zhang Z, Xiao Y, Huang P, Wu FY. Integrated ratiometric luminescence sensing strategy based on encapsulation of guests in heterobinuclear lanthanide coordination polymer nanoparticles for glucose detection in human serum. Talanta 2023; 265:124854. [PMID: 37413722 DOI: 10.1016/j.talanta.2023.124854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Lanthanide coordination polymers (LnCPs) can be used as a host platform to encapsulate functional guest molecules for the construction of integrated sensing platforms. In this work, two guest molecules, rhodamine B (RhB) and glucose oxidase (GOx), were successfully encapsulated in a heterobinuclear lanthanide coordination polymer synthesized by self-assembly of Ce3+, Tb3+ and adenosine monophosphate (AMP) to form RhB&GOx@AMP-Tb/Ce. Both guest molecules show good storage stability and minimal leakage. The higher catalytic activity and stability of RhB&GOx@AMP-Tb/Ce is obtained due to the confinement effect compared to free GOx. RhB&GOx@AMP-Tb/Ce exhibits superior luminescence based on the internal tandem energy transfer process of the nanoparticles (Ce3+→Tb3+→RhB). Glucose can be oxidized in the presence of GOx to form gluconic acid and H2O2. Subsequently, Ce3+ in the AMP-Tb/Ce host structure can be oxidized by H2O2 to Ce4+, thereby interrupt the internal energy transfer process and cause ratiometric luminescence response. Benefiting from the synergistic effect, the smart integrated luminescent glucose probe exhibits a wide linear range (0.4-80 μM) and a low detection limit (74.3 nM) with high sensitivity, selectivity and simplicity, enabling the quantitative detection of glucose in human serum. This work describes a good strategy to construct an integrated luminescence sensor based on lanthanide coordination polymers.
Collapse
Affiliation(s)
- Nan Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhipeng Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
An optimized protocol to assess trypsin activity in biological samples. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Improved sensitivity of gold nanoclusters toward trypsin under synergistic adsorption of CdTe quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Abdussalam A, Chen Y, Yuan F, Ma X, Lou B, Xu G. Dithiothreitol-Lucigenin Chemiluminescent System for Ultrasensitive Dithiothreitol and Superoxide Dismutase Detection. Anal Chem 2022; 94:11023-11029. [PMID: 35878317 DOI: 10.1021/acs.analchem.2c01690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4-Dithiothreitol (DTT), a highly water-soluble and well-known reducing agent for preservation and regeneration of sulfhydryl groups in biomedical applications, has been developed as an efficient and stable coreactant of lucigenin for the first time. DTT efficiently reacts with lucigenin to generate intense chemiluminescence (CL), eliminating the need for external catalysts to facilitate the lucigenin CL. The DTT-lucigenin CL is approximately 15-fold more intense when compared with the lucigenin-H2O2 classical system. Superoxide dismutase (SOD) remarkably quenches the DTT-lucigenin CL. Based on this phenomenon, a newly developed CL approach for the determination of SOD was proposed with a linear range of 0.01-1.5 μg/mL and a limit of detection of 2.2 ng/mL. Various factors affecting the CL emission of the DTT-lucigenin probe were studied and optimized. Plausible mechanistic pathways for the CL coreaction of lucigenin with DTT were proposed and fully discussed. Our proposed method not only has the merit of being selective toward the target analytes but also eliminates the need for the complex synthesis of luminescent probes and facilitates the sensitive detection of SOD in human serum and cosmetics SOD raw material with satisfactory recoveries.
Collapse
Affiliation(s)
- Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinsai Road, Hefei, Anhui 230026, P. R. China.,College of Natural and Pharmaceutical Sciences, Bayero University, PMB 3011, Kano 700006, Nigeria
| | - Yequan Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinsai Road, Hefei, Anhui 230026, P. R. China
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinsai Road, Hefei, Anhui 230026, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| |
Collapse
|
6
|
Huang S, Yao J, Ning G, Li B, Mu P, Xiao Q. Ultrasensitive ratiometric fluorescent probes for Hg( ii) and trypsin activity based on carbon dots and metalloporphyrin via a target recycling amplification strategy. Analyst 2022; 147:1457-1466. [DOI: 10.1039/d1an02287c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ultrasensitive ratiometric fluorescent probe was developed for Hg(ii) and trypsin based on CDs and TPPS via a target recycling amplification strategy. The detection limits of Hg2+ and trypsin were 0.086 nM and 0.013 ng mL−1.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
7
|
Roushani M, Zalpour N. Impedimetric ultrasensitive detection of trypsin based on hybrid aptamer-2DMIP using a glassy carbon electrode modified by nickel oxide nanoparticle. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Nemati F, Hosseini M. A ratiometric fluorescence and colorimetric dual-mode assay for miRNA-155 based on Ce-decorated boron nitride nanosheets. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Wang Q, Yin H, Ding J, Fang X, Zhou Y, Ai S. Enhanced photoactivity of ZnPc@WS 2 heterojunction by CuBi 2O 4 and its application for photoelectrochemical detection of 5-formyl-2'-deoxycytidine. Talanta 2021; 234:122697. [PMID: 34364493 DOI: 10.1016/j.talanta.2021.122697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
The endogenous epigenetic marker 5-formylcytosine (5 fC) is introduced by 5-methylcytosine (5 mC) oxidation under action of enzyme oxidation, and plays an important role in many life activities. Since the content of 5 fC in mammalian tissues and cells is very low, it is necessary to exploit a sensitive and specific detection method to further understand the function of 5 fC. In this work, a sensitively and selectively photoelectrochemical (PEC) biosensor was developed for 5-formyl-2'-deoxycytidine (5fdC) detection. CuBi2O4/ZnPc@WS2 was used as photoactive material, where the formed ternary heterojunction structure greatly enhanced the PEC response and increased the detection sensitivity. Positively charged polyethyleneimine (PEI) was employed as 5fdC recognition and capture unit, where the amine group on PEI specifically reacted with aldehyde group of 5fdC to form stable amide bond. 4-Carboxyphenylboronic acid (4-CPBA) was adopted as crosslinker for 5fdC and amino functionalized CuBi2O4 based on the covalent interaction between 1,3-diol bond on 5fdC and boric acid structure on 4-CPBA, and the covalent interaction between -COOH on 4-CPBA and -NH2 on amino functionalized CuBi2O4. On the basis of the positive synergistic effect of ZnPc and CuBi2O4 on improving the photoelectric performance of WS2, the separation of photo-generated electron-hole pairs in semiconductors were promoted, and the examination range was expanded from 0.1 to 500 nM, and the detection limit was 0.0483 nM (3σ). Based on the unique covalent reaction between -NH2 and -CHO, the PEC biosensor has excellent detection sensitivity, and can even separate 5fdC from 5-methylcytosine deoxyribonucleoside and 5-hydroxymethylcytosine deoxyribonucleoside. The effect of antibiotics and heavy metals on the 5fdC content in wheat tissue genome has also been further investigated using this sensor.
Collapse
Affiliation(s)
- Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China.
| | - Jia Ding
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Xi Fang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| |
Collapse
|
10
|
Guan S, Yue J, Sun W, Xu W, Liang C, Xu S. Ultrasensitive detection of trypsin in serum via nanochannel device. Anal Bioanal Chem 2021; 413:4939-4945. [PMID: 34212213 DOI: 10.1007/s00216-021-03491-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
A highly sensitive trypsin sensing system in serum was developed by using an anodic alumina oxide (AAO)-based, trypsin substrate-decorated hybrid ion permeation membrane. Owing to the trypsin-triggered peptide hydrolyzation reaction, the surface electrical feature of the peptide-decorated hybrid ion membrane changed. The electric double layer effect reduces the effective ion current diameter in the AAO nano unit, so that the ion current rectification ratio will be enhanced, realizing the quantitative detection of trypsin. The lowest detection concentration can be achieved as low as 0.1 pM. This method is no need for sample pre-preparation, easy to operate, highly sensitive, and also applicable to other enzyme evaluation systems by changing corresponding substrates. This study provides a new idea for selective measurements of proteases in complex biological samples.
Collapse
Affiliation(s)
- Shulin Guan
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Weihan Sun
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Poplinger D, Bokan M, Hesin A, Thankarajan E, Tuchinsky H, Gellerman G, Patsenker L. Ratiometric Fluorescence Monitoring of Antibody-Guided Drug Delivery to Cancer Cells. Bioconjug Chem 2021; 32:1641-1651. [PMID: 34115936 DOI: 10.1021/acs.bioconjchem.1c00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ratiometric measurements utilizing two independent fluorescence signals from a dual-dye molecular system help to improve the detection sensitivity and quantification of many analytical, bioanalytical, and pharmaceutical assays, including drug delivery monitoring. Nevertheless, these dual-dye conjugates have never been utilized for ratiometric monitoring of antibody (Ab)-guided targeted drug delivery (TDD). Here, we report for the first time on the new, dual-dye TDD system, Cy5s-Ab-Flu-Aza, comprising the switchable fluorescein-based dye (Flu) linked to the anticancer drug azatoxin (Aza), reference pentamethine cyanine dye (Cy5s), and Her2-specific humanized monoclonal Trastuzumab (Herceptin) antibody. The ability of ratiometric fluorescence monitoring of drug release was demonstrated with this model system in vitro in the example of the human breast cancer SKBR3 cell line overexpressing Her2 receptors. The proposed approach for designing ratiometric, antibody-guided TDD systems, where a "drug-switchable dye" conjugate and a reference dye are independently linked to an antibody, can be expanded to other drugs, dyes, and antibodies. Replacement of the green-emitting dye Flu, which was found not detectable in vivo, with a longer-wavelength (red or near-IR) switchable fluorophore should enable quantification of drug release in the body.
Collapse
Affiliation(s)
- Dvir Poplinger
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Maksym Bokan
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Ebaston Thankarajan
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
12
|
Xia M, Shi F, Xia Y, Sun J, Zhao XE, Zhu S. Ce 4+-triggered cascade reaction for ratiometric fluorescence detection of alendronate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119437. [PMID: 33461138 DOI: 10.1016/j.saa.2021.119437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A ratiometric fluorescence assay for alendronate (ALDS) has been designed with Ce4+-triggered cascade chromogenic reaction. This strategy involves three processes: (1) Ce4+ oxidizes ascorbic acid (AA) into dehydroascorbic acid (DHAA), which then condenses with o-phenlenediamine (OPD) to generate fluorescent 3-(dihydroxyethyl)furo[3,4-b] quinoxaline-1-one (DFQ), presenting the maximum emission at 434 nm; (2) As oxidase-mimics, Ce4+ can oxidize OPD into fluorescent 2,3-diaminophenazine (DAP) which shows a strong emission at 568 nm; (3) ALDS inhibits the oxidation ability of Ce4+ towards OPD, thus inhibiting the generation of DAP. Accordingly, a homogeneous ratiometric fluorescence system with dual emission comes into being and the presence of ALDS can change the fluorescence intensity ratio obviously. With F434/F568 as readout, ALDS can be detected sensitively with the detection limit of 30 nM. Moreover, this ratiometric method was used to analyze ALDS in both human serum and pharmaceutical samples.
Collapse
Affiliation(s)
- Meng Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Fengjin Shi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
13
|
Piovarci I, Melikishvili S, Tatarko M, Hianik T, Thompson M. Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry. BIOSENSORS 2021; 11:117. [PMID: 33920444 PMCID: PMC8070231 DOI: 10.3390/bios11040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
The determination of protease activity is very important for disease diagnosis, drug development, and quality and safety assurance for dairy products. Therefore, the development of low-cost and sensitive methods for assessing protease activity is crucial. We report two approaches for monitoring protease activity: in a volume and at surface, via colorimetric and acoustic wave-based biosensors operated in the thickness-shear mode (TSM), respectively. The TSM sensor was based on a β-casein substrate immobilized on a piezoelectric quartz crystal transducer. After an enzymatic reaction with trypsin, it cleaved the surface-bound β-casein, which increased the resonant frequency of the crystal. The limit of detection (LOD) was 0.48 ± 0.08 nM. A label-free colorimetric assay for trypsin detection has also been performed using β-casein and 6-mercaptohexanol (MCH) functionalized gold nanoparticles (AuNPs/MCH-β-casein). Due to the trypsin cleavage of β-casein, the gold nanoparticles lost shelter, and MCH increased the attractive force between the modified AuNPs. Consequently, AuNPs aggregated, and the red shift of the absorption spectra was observed. Spectrophotometric assay enabled an LOD of 0.42 ± 0.03 nM. The Michaelis-Menten constant, KM, for reverse enzyme reaction has also been estimated by both methods. This value for the colorimetric assay (0.56 ± 0.10 nM) is lower in comparison with those for the TSM sensor (0.92 ± 0.44 nM). This is likely due to the better access of the trypsin to the β-casein substrate at the surface of AuNPs in comparison with those at the TSM transducer.
Collapse
Affiliation(s)
- Ivan Piovarci
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Marek Tatarko
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Michael Thompson
- Lash Miller Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|