1
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
2
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024; 25:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Zhang W, Zhu G, Li N, Wang L, Wang M, Wu Y, Zhao Y, Hu Q, Guo G, Wang X. Label-Free Direct Identification of MicroRNAs Based on a Narrow Constant-Inner-Diameter Emitter Mass Spectrometry Analysis. Anal Chem 2024; 96:8914-8921. [PMID: 38776971 DOI: 10.1021/acs.analchem.3c05437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are a class of endogenous noncoding small RNAs that play important roles in various biological processes and diseases. Direct determination of miRNAs is a cost-efficient and accurate method for analysis. Herein, we established a novel method for the analysis of miRNAs based on a narrow constant-inner-diameter mass spectrometry emitter. We utilized the gravity-assisted sleeving etching method to prepare a constant-inner-diameter mass spectrometry emitter with a capillary inner diameter of 5.5 μm, coupled it with a high-voltage power supply and a high-resolution mass spectrometer, and used it for miRNA direct detection. The method showed high sensitivity and reproducibility for the analysis of four miRNAs, with a limit of detection of 100 nmol/L (170 amol) for the Hsa-miR-1290 analysis. Compared with commercial ion sources, our method achieved higher sensitivity for miRNA detection. In addition, we analyzed the total miRNAs in the A549 cells. The result indicated that both spiked and endogenous miRNAs could be quantified with high accuracy. As a result, this method offers a promising platform for highly sensitive and accurate miRNA analysis. Furthermore, this approach can be extended to the analysis of other small oligonucleotides and holds the potential for studying clinical samples and facilitating disease diagnosis.
Collapse
Affiliation(s)
- Wenmei Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Guizhen Zhu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Ning Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Liangxia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Mengying Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Yuanyuan Wu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Yaoyao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Qin Hu
- Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Department of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
- Minzu University of China, Beijing 100081, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Salzer L, Schmitt-Kopplin P, Witting M. Capillary electrophoresis-mass spectrometry as a tool for Caenorhabditis elegans metabolomics research. Metabolomics 2023; 19:61. [PMID: 37351740 DOI: 10.1007/s11306-023-02025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Polar metabolites in Caenorhabditis elegans (C. elegans) have predominantly been analyzed using hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS). Capillary electrophoresis coupled to mass spectrometry (CE-MS) represents another complementary analytical platform suitable for polar and charged analytes. OBJECTIVE We compared CE-MS and HILIC-MS for the analysis of a set of 60 reference standards relevant for C. elegans and specifically investigated the strengths of CE separation. Furthermore, we employed CE-MS as a complementary analytical approach to study polar metabolites in C. elegans samples, particularly in the context of longevity, in order to address a different part of its metabolome. METHOD We analyzed 60 reference standards as well as metabolite extracts from C. elegans daf-2 loss-of-function mutants and wild-type (WT) samples using HILIC-MS and CE-MS employing a Q-ToF-MS instrument. RESULTS CE separations showed narrower peak widths and a better linearity of the estimated response function across different concentrations which is linked to less saturation of the MS signals. Additionally, CE exhibited a distinct selectivity in the separation of compounds compared to HILIC-MS, providing complementary information for the analysis of the target compounds. Analysis of C. elegans metabolites of daf-2 mutants and WT samples revealed significant alterations in shared metabolites identified through HILIC-MS, as well as the presence of distinct metabolites. CONCLUSION CE-MS was successfully applied in C. elegans metabolomics, being able to recover known as well as identify novel putative biomarkers of longevity.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Witting
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
5
|
Guimaraes GJ, Leach FE, Bartlett MG. Microflow Liquid Chromatography – Multi-Emitter Nanoelectrospray Mass Spectrometry of Oligonucleotides. J Chromatogr A 2023; 1696:463976. [PMID: 37054634 DOI: 10.1016/j.chroma.2023.463976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
While the most sensitive LC-MS methods for oligonucleotide analysis contain ion-pairs in the mobile phase, these modifiers have been associated with instrument contamination and ion suppression. Typically, entire LC-MS systems are reserved for oligonucleotide LC-MS when using ion-pairing buffers. To overcome these limitations, numerous HILIC methods, liberated from ion-pairs, have been recently developed. Since ion-pairs play a role in analyte desorption from ESI droplets, their removal from mobile phases tend to impact method sensitivity. An effective way to recover MS sensitivity is to reduce the LC flow rate and therefore reduce ESI droplet size. With a focus on MS sensitivity, this study investigates the applicability of a microflow LC- nanoelectrospray MS platform in oligonucleotide ion-pair RP and HILIC LC-MS methods. The platform is effective and substantially increased the MS sensitivity of HILIC methods. Furthermore, LC method development for both types of separations provide insight into microflow chromatography of oligonucleotides, an under investigated chromatographic scale.
Collapse
|
6
|
Bioanalysis of Oligonucleotide by LC-MS: Effects of Ion Pairing Regents and Recent Advances in Ion-Pairing-Free Analytical Strategies. Int J Mol Sci 2022; 23:ijms232415474. [PMID: 36555119 PMCID: PMC9779676 DOI: 10.3390/ijms232415474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotides (OGNs) are relatively new modalities that offer unique opportunities to expand the therapeutic targets. Reliable and high-throughput bioanalytical methods are pivotal for preclinical and clinical investigations of therapeutic OGNs. Liquid chromatography-mass spectrometry (LC-MS) is now evolving into being the method of choice for the bioanalysis of OGNs. Ion paring reversed-phase liquid chromatography (IP-RPLC) has been widely used in sample preparation and LC-MS analysis of OGNs; however, there are technical issues associated with these methods. IP-free methods, such as hydrophilic interaction liquid chromatography (HILIC) and anion-exchange techniques, have emerged as promising approaches for the bioanalysis of OGNs. In this review, the state-of-the-art IP-RPLC-MS bioanalytical methods of OGNs and their metabolites published in the past 10 years (2012-2022) are critically reviewed. Recent advances in IP-reagent-free LC-MS bioanalysis methods are discussed. Finally, we describe future opportunities for developing new methods that can be used for the comprehensive bioanalysis of OGNs.
Collapse
|
7
|
Seyfinejad B, Jouyban A. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal 2022; 221:115059. [DOI: 10.1016/j.jpba.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
8
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Analysis of therapeutic nucleic acids by capillary electrophoresis. J Pharm Biomed Anal 2022; 219:114928. [PMID: 35853263 DOI: 10.1016/j.jpba.2022.114928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
Abstract
Nucleic acids are getting increased attention to fulfill unmet medical needs. The past five years have seen more than ten FDA approvals of nucleic acid based therapeutics. New analytical challenges have been posed in discovery, characterization, quality control and bioanalysis of therapeutic nucleic acids. Capillary electrophoresis (CE) has proven to be an efficient separation technique and has been widely used for analyzing oligonucleotides and nucleic acids. This review discusses the recent technical advances of CE in nucleic acid analysis such as polymeric matrices, separation conditions and detection methods, and the applications of CE to various therapeutic nucleic acids including antisense oligonucleotide (ASO), small interfering ribonucleic acid (siRNA), messenger RNA (mRNA), gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)-based gene and cell therapy, and other nucleic acid related therapeutics.
Collapse
|
10
|
Abstract
该文为2020年毛细管电泳(capillary electrophoresis, CE)技术年度回顾。归纳总结了以“capillary electrophoresis-mass spectrometry”或“capillary isoelectric focusing”或“micellar electrokinetic chromatography”或“capillary electrophoresis”为关键词在ISI Web of Science数据库中进行主题检索得到的2020年CE技术相关研究论文222篇,以及中文期刊《分析化学》和《色谱》中CE技术相关的研究论文37篇。对2020年影响因子(IF)≥5.0的Analytical Chemistry, Food Chemistry, Analytica Chimica Acta和Talanta等13本期刊的38篇文章报道的科研工作作了逐一介绍;对IF<5.0的期刊中CE技术报道较为集中的Journal of Chromatography A和Electrophoresis两本分析化学类期刊发表40篇文章中的代表性内容作了综合介绍;对重要的中文期刊《分析化学》出版的“核酸适配体专刊”和《色谱》出版的2期CE技术专刊所收录的37篇文章中的工作作了总体介绍。总体来说,2020年CE技术发展趋势仍以毛细管电泳-质谱(CE-MS)的新方法和新应用最为突出,主要集中在CE-MS与电化学检测、固相萃取以及多种毛细管电泳模式的联用方面,CE-MS接口相关的报道较前几年有所减少;常规CE技术则以胶束电动毛细管色谱(MEKC)在复杂样本分析、浓缩富集应用为主,尤其在食品和药品等复杂基质样本分析方面的报道较为集中;此外,我国CE相关领域专家学者的科研成果涵盖了CE在生命科学、临床医学、医药研发、环境科学、天然产物、食品分析等领域的应用,代表了国内CE科研应用水平和现状。
Collapse
|
11
|
Nuckowski Ł, Dzieszkowski K, Rafiński Z, Studzińska S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3146. [PMID: 34201146 PMCID: PMC8226603 DOI: 10.3390/ma14123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles coated with zwitterionic poly(ionic liquid)s were applied for dispersive solid-phase extraction of oligonucleotides. The materials were synthesized by miniemulsion copolymerization of ionic liquids and divinylbenzene on magnetic nanoparticles. The functional monomers contain a positively charged imidazolium ring and one of the anionic groups: derivatives of acetate, malonate, or butyl sulfonate ions. Adsorption of unmodified DNA oligonucleotide on obtained materials was possible in ion-exchange (IE) and hydrophilic interactions (HI) mode. The adsorption in IE was possible at low pH and was almost complete. The adsorption in HI mode required the usage of appropriate addition of organic solvent but did not provide full adsorption. Studies on the desorption of the analytes included determining the impact of ammonium acetate concentration and pH and organic solvents addition on the recovery. The material containing acetic fragments as an anionic group was selected for the final procedure with the use of 10 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v) as an elution solution. The magnetic dispersive solid-phase extraction procedure was tested for the oligonucleotides with various modifications and lengths. Moreover, it was applied to extract DNA oligonucleotide and its synthetic metabolites from enriched human plasma without any pre-purification, with recoveries greater than 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| |
Collapse
|
12
|
Ionic matrices for matrix-assisted laser desorption/ionization mass spectrometry analysis of microRNA biomarkers. Anal Chim Acta 2020; 1139:169-177. [PMID: 33190701 DOI: 10.1016/j.aca.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022]
Abstract
The use of ionic matrices (IMs) was evaluated as an alternative to conventional matrices to analyze microRNAs (miRNAs) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). 2, 4, 6-Trihydroxyacetophenone (THAP), 6-aza-2-thiothymine (ATT) and 3-hydroxypicolinic acid (3-HPA) and their IMs with pyridine (PYR) and butylamine (BA) were studied to analyze a standard mixture of miRNAs: miR-21, let-7g and iso-miR-16. Among all the studied matrices, ATT-PYR at 75 mg/mL in acetonitrile (MeCN):H2O (50:50, v/v) was selected as the optimal. Furthermore, addition of ammonium citrate dibasic (AC) as signal enhancer was mandatory to obtain an appropriate miRNA detection. ATT-PYR provided the best sensitivity, with limit of detection (LOD) up to 5 nM (equivalent to 1 fmol in the spot) and excellent spot-to-spot repeatability due to the improved homogeneity of the spots compared to the conventional matrices. The applicability of the established method to direct, multiplex and untargeted analysis of miRNAs in serum samples was also investigated.
Collapse
|