1
|
Wu GF, Zhu J, Weng GJ, Li JJ, Zhao JW. 3D composite SERS substrate constructed by Au-Ag core-satellite NPs and polystyrene sphere for ultrasensitive ratiometric Raman detection of cotinine. Talanta 2025; 289:127742. [PMID: 39985926 DOI: 10.1016/j.talanta.2025.127742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
To enhance the efficacy of Surface-enhanced Raman spectroscopy (SERS), noble metal nanoparticles (NMNPs) can be organized onto three-dimensional (3D) hierarchical nanostructures. This study involved constructing a 3D solid SERS substrate by layering Au-Ag core-satellite nanoparticle monolayer films (MF) on a polystyrene sphere (PS) array, termed Au-Ag core-satellite NPs-MF-PS. Optimizing the PS size was essential to maximize SERS substrate activity, with the 500 nm PS providing the best SERS enhancement factor of 1.03 × 107 a two-fold increase over Au-Ag core-satellite NPs MF alone. Additionally, cotinine detection was improved by using a ratio between the target molecules and internal Raman signals from the SERS substrate. Compared to conventional methods relying on the target molecule's Raman signal, this ratiometric SERS method expanded the detection range from 10-8 - 10-1 M to 10-9 - 10-1 M and reduced the detection limit from 3.67 × 10-9 M to 1.68 × 10-10 M. This approach represents a novel direction in creating ultra-sensitive SERS platforms with broad applications, suggesting that ratiometric SERS could further promote SERS technology advancements.
Collapse
Affiliation(s)
- Gao-Feng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
2
|
Almassi AA, Oliver BGG, Smith SM. Analysis of Assessment Methods for Detecting Nicotine Residue and Its Impact on Humans: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:621. [PMID: 40283845 PMCID: PMC12027364 DOI: 10.3390/ijerph22040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Thirdhand smoke (THS) was first identified by Graham and colleagues in 1953, and nicotine was detected in household dust from smokers in 1991. Thirdhand smoke (THS) consists of toxic nicotine residues that persist on surfaces long after tobacco use, posing a significant public health concern. Individuals can be exposed to thirdhand smoke through skin contact or inhalation, particularly affecting children and infants who are most vulnerable to tobacco contaminants. This review aims to assess the effectiveness of different methods for measuring nicotine THS residues to evaluate their accuracy across various age groups. METHODS Relevant literature was sourced from databases including ProQuest (Ovid), Medline (Ovid), Embase (Ovid), Scopus, and the Cochrane Library. The timeframe for included studies ranged the last 25 years, from 1999 to 2024. Eligible participants consisted of human populations exposed to thirdhand smoke residue. For this review, the animal studies were excluded. There were no restrictions regarding age, sex, ethnicity, or nationality for participant selection. For data management and screening, the Covidence systematic tool was utilized. Data extraction was performed independently by two reviewers. This protocol was registered with PROSPERO (CRD42024574140). RESULTS A total of 394 studies were retrieved from 5 databases for the initial screening. A total of 67 studies included in full-text screening, and ultimately, 36 studies were selected for full review. The studies were classified into four categories based on assessment methods: (1) analysis of human secretions, including salivary or urinary tests; (2) cellular analysis utilizing cellulose substrates or paper-based materials; (3) environmental assessments, which examined outdoor surfaces, vehicles, residential spaces, and fabrics; and (4) epidemiological assessments, employing surveys or questionnaires. Non-invasive matrices such as saliva and urine were frequently utilized for biomarker analysis. The studies collectively investigated nicotine and its metabolites in human biological samples, environmental surface contamination, and thirdhand smoke (THS) exposure. They employed a diverse range of assessment tools including surveys, machine learning technique, and cellulose-based substrates. CONCLUSIONS This review identified various selective testing methods for detecting thirdhand smoke (THS) from nicotine. These assessment methods have advantages and disadvantages and underscores the need for further research. Improving these techniques for assessment of THS could significantly improve our understanding of the impact THS has on human health.
Collapse
Affiliation(s)
- Audrey A. Almassi
- Faculty of Science, School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia;
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
| | - Brian G. G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia;
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
| | - Sheree M. Smith
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
- Faculty of Health and Medical Sciences, Adelaide Nursing School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Min K, Li Y, Lin Y, Yang X, Chen Z, Chen B, Ma M, Liu Q, Jiang G. Mass Spectrometry Imaging Strategy for In Situ Quantification of Soot in Size-Segregated Air Samples. Anal Chem 2022; 94:15189-15197. [DOI: 10.1021/acs.analchem.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xuezhi Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
In situ quantitative analysis by ultrasonic extraction and nebulization combined with hydrogen flame ionization mass spectrometry: Diisopropylnaphthalene (DIPN), a marker of recycled paper in packing materials. Talanta 2022; 243:123361. [DOI: 10.1016/j.talanta.2022.123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
6
|
|
7
|
Min K, Weng X, Long P, Ma M, Chen B, Yao S. Rapid in-situ analysis of phthalates in face masks by desorption corona beam ionization tandem mass spectrometry. Talanta 2021; 231:122359. [PMID: 33965025 DOI: 10.1016/j.talanta.2021.122359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022]
Abstract
Phthalates (PAEs) are known as endocrine disruptors that can have adverse effects on human hormonal balance and development. Due to PAEs being semi-volatile chemical compounds, they can sustainably emit from the surfaces of objects containing PAEs. Face masks are commonly used to safeguard human health especially during periods of high prevalence of infectious diseases. As masks come into direct contact with the human respiratory system, PAEs from masks will enter the human body directly from the respiratory system thus potentially threatening human health. In this study, the desorption corona beam ionization (DCBI)-MS/MS method for the rapid in-situ detection of PAEs in face masks was established, which could perform ultra-fast, high-throughput identification and quantitative analysis on 13 kinds of PAEs, and the limits of detection (LODs) were 0.7 μg m-2 for DAP, BBP, DBP, DPP, DHXP, DEHP, DINP and DDP, 1.4 μg m-2 for DMEP, DEP, DPhP, DBEP and DNOP. Compared with the traditional liquid chromatography tandem mass spectrometry, this study shows that the DCBI-MS/MS method has the following advantages: 1) short analysis time, less than 1 min; 2) small solvent consumption, less than 10 μL; 3) the PAEs in face masks can be quickly in-situ screened.
Collapse
Affiliation(s)
- Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Xuqian Weng
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Piao Long
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Shouzhuo Yao
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|