1
|
Yin Y, Zhang J, Ji C, Zhao Z, Wang X, Wang P, Yang Y. Flexible silver-metal-organic framework probe for highly sensitive and visual detection of tetracycline hydrochloride in freshwater fish. Talanta 2025; 294:128200. [PMID: 40288192 DOI: 10.1016/j.talanta.2025.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Tetracycline hydrochloride (TCH) is commonly used in aquaculture to prevent bacterial infections, renders the detection of its residues highly crucial for ensuring the safety of aquatic products. In this study, an Ag-based metal-organic framework, Ag-dcp (H3dcp = 3-(3,5-dicarboxyphenyl)-6-carboxypyridine), was synthesized through hydrothermal method. The Ag-dcp framework offers environmental advantages, including a green synthesis process and potential for sustainable, eco-friendly applications. The uncoordinated carboxyl groups in Ag-dcp provide potential interaction sites for TCH, while the rhombic channels in the flexible structure of Ag-dcp that match the size of TCH effectively facilitate host-guest interactions. The Ag-dcp enables ratiometric fluorescence detection with high sensitivity via intramolecular charge transfer (ICT) triggered by TCH-induced ether bond rotation. The probe demonstrates a fluorescence color changes from blue to orange, achieving a detection limit as low as 0.14 μM and offering an ultrafast response time of just 10 s. Principal component analysis (PCA) was employed to effectively distinguish TCH from other tetracycline analogs (minocycline hydrochloride (MH) and doxycycline hydrochloride (DOX)), thereby enhancing the selectivity of the Ag-dcp probe. The fluorescence probe demonstrated performance comparable to HPLC in detecting TCH in freshwater fish. The detection strategy proposed here, based on the MOF structure, offers valuable insights for designing MOF materials and their specialized applications.
Collapse
Affiliation(s)
- Yuanyuan Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jian Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Chengshan Ji
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zeyu Zhao
- National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xin Wang
- Department of Food Engineering, Chemistry, Harbin University, Harbin, 150001, PR China.
| | - Ping Wang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Yulin Yang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
2
|
Zhang C, Guo J, Zhang Y, Liu C. A novel fluorescent probe with large stokes shift based on naphthalimide and phenanthroline for specific detection of Ag + and its application in living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126222. [PMID: 40245591 DOI: 10.1016/j.saa.2025.126222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Silver ions (Ag+) are widely used in industry and daily life. To achieve the specific and sensitive detection of Ag+, a novel fluorescent probe NP based on naphthalimide-phenanthroline was developed in this study. NP has an emission wavelength of 580 nm and exhibits a large Stokes shift (190 nm), showing a quenching fluorescence response to Ag+. NP can sensitively detect Ag+ with a detection limit as low as 24.6 nM. The response time is only 110 s. In particular, NP demonstrates effective detection of Ag+ in real water samples. In addition, NP exhibits low toxicity and has been successfully applied for Ag+ imaging in Hela cells.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China.
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| |
Collapse
|
3
|
Liu Y, Zhu Y, Liu X, Dong L, Zheng Q, Kang S, He Y, Wang J, Abd El-Aty AM. CdSe/ZnS QDs embedded polyethersulfone fluorescence composite membrane for sensitive detection of copper ions in various drinks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:120-130. [PMID: 36734347 DOI: 10.1080/03601234.2023.2172280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The copper ion was detected rapidly by a novel sensing membrane in this paper for its damage to health and the environment. CdSe/ZnS QDs modified polyethersulfone membrane (QDs@PESM) was made by phase-inversion method using a membrane separation technique and quantum dots (QDs). When the sample passed through the membrane, the copper ions in the sample caused the membrane's fluorescence to be quenched. The fluorescence quenching value of the membrane is used to calculate the concentration of copper ions. With R2= 0.9964, Cu2+could be quantitatively detected over a wide concentration range (10-1000 μg/L). The method's LOD and LOQ were 4.27 and 14.23 μg/L, respectively. When the CdSe/ZnS QDs@PESM was used to analyze Cu2+ in various real drinks, including well water, baijiu, orange juice, beer, and milk, the recovery ranged from 79.1 to 123.9%, indicating that the CdSe/ZnS QDs@PESM can be used as a rapid, simple and reliable method to determine Cu2+ in various matrices.
Collapse
Affiliation(s)
- Yajie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Food Additive Engineering Technology Research Center, School of Food and Health, Beijing Technology &Business University, Beijing, China
| | - Yao Zhu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Food Additive Engineering Technology Research Center, School of Food and Health, Beijing Technology &Business University, Beijing, China
| | - Xinyu Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Food Additive Engineering Technology Research Center, School of Food and Health, Beijing Technology &Business University, Beijing, China
| | - Liming Dong
- School of Ecology and Environment, Beijing Technology &Business University, Beijing, P.R. China
| | - Qinglin Zheng
- Beijing Persee General Instrument Co., Ltd, Beijing, P.R. China
| | - Shu Kang
- Beijing Persee General Instrument Co., Ltd, Beijing, P.R. China
| | - Yahui He
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Food Additive Engineering Technology Research Center, School of Food and Health, Beijing Technology &Business University, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Food Additive Engineering Technology Research Center, School of Food and Health, Beijing Technology &Business University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Chen Z, Lv W, Yang C, Ping M, Fu F. Sensitive detection and intracellular imaging of free copper ions based on DNA-templated silver nanoclusters aggregation-inducing fluorescence enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121734. [PMID: 35970089 DOI: 10.1016/j.saa.2022.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Free copper ions (Cu+ and Cu2+) have critical toxicity to cells, although copper is an essential element for human body. Hence, sensitive monitoring is crucial to avoid over intake of Cu+/Cu2+. We herein designed a ssDNA sequence (A31) for synthetizing A31-templated silver nanoclusters (AgNCs), and demonstrated that Cu+/Cu2+ can induce the aggregation of A31-templated AgNCs and thus greatly enhanced the fluorescence emission of A31-templated AgNCs. Based on Cu+/Cu2+-induced fluorescence enhancement effect of A31-templated AgNCs, a label-free and signal-on fluorescent sensing platform was developed for the specific and sensitive detection of Cu+/Cu2+ in biological samples and intracellular imaging of Cu+/Cu2+ in cells. The signal-on fluorescent sensing platform could be used to rapidly detect Cu+ and Cu2+ with a detection limit of 0.1 µM within 30 min., and to perform the intracellular imaging of Cu+ and Cu2+ in cells with good cell permeability and biocompatibility. By using the signal-on fluorescent sensing platform, we have successfully detected Cu+ and Cu2+ in cells fluids and human serum with a recovery of 90-104% and a RSD (n = 5) < 5%, and performed the imaging of Cu+/Cu2+ in Hela cells. The developed fluorescent sensing platform has obvious analytical and imaging advantages such as signal-on, simple operation, short analysis time, both Cu+ and Cu2+ detection, similar or higher sensitivity, good cell permeability and biocompatibility, which promising a reliable approach for the rapid and on-site detection or imaging of free copper ions in biological samples in clinical diagnosis.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; College of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 36300, China
| | - Wenchao Lv
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Yang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
5
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Colorimetric and fluorescent dual-channel sensor array based on Eriochrome Black T/Eu3+ complex for sensing of multiple tetracyclines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Fu L, Liu T, Yang F, Wu M, Yin C, Chen L, Niu N. A multi-channel array for metal ions discrimination with animal bones derived biomass carbon dots as sensing units. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
He Y, Wang Y, Mao G, Liang C, Fan M. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal Chim Acta 2022; 1191:339251. [PMID: 35033275 DOI: 10.1016/j.aca.2021.339251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Owing to the high risk to human and environmental health, heavy metal pollution has become a global problem. Rapid, accurate and multiplexed determination of heavy metal ions is critical. In this work, we reported a promising approach to designing ratiometric fluorescent nanoprobes for multiplexed determination of Hg2+, Cu2+, and Ag+ ions. The nanoprobes (CDs-QDx) were designed by mixing the CDs and multicolor CdTe QDs without the involvement of recognition elements. The CDs were insensitive to heavy metal ions while CdTe QDs showed the size-dependent fluorescence response to different heavy metal ions, thereby establishing a ratiometric detection scheme by measuring the fluorescence intensity ratios of CDs-QDx systems. By evaluating the detection performance, the CDs-QDx (x = 570, 650, and 702) were successfully used for differentiation and quantification of Hg2+, Cu2+, and Ag+ ions. In addition, we also carried out the detection of heavy metal ions in actual samples with acceptable results. We believed that this work offers new insight into the design of ratiometric fluorescent nanoprobe for multiplexed determination of not only heavy metals but also some other analytes by combining the CDs with CdTe QDs with fine-tuned sizes.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Gennian Mao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Min Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
9
|
Wu X, Meng X, Hou B, Sun Z, Zhang Y, Li M. Rapid fluorescent color analysis of copper ions on a smart phone via ratiometric fluorescence sensor. Mikrochim Acta 2022; 189:67. [PMID: 35064839 DOI: 10.1007/s00604-022-05166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A smartphone-assisted fluorescence color sensing system for rapid, convenient, and on-site detection of copper ions was developed. The ratiometric fluorescence sensor was fabricated by using silica-coated blue-light-emitting carbon dots and surface-grafted red-light-emitting cadmium-telluride quantum dots. After exposure to Cu2+ in 20 s, the red fluorescence was quenched obviously, while the blue fluorescence remained unchanged, and the sensor color changes continuously from red to blue under the ultraviolet lamp. The concentration (50-1200 nM) of copper ions could be measured by the fluorescence spectrum (excitation at 360 nm, dual-emission at 441 and 640 nm) with a detection limit of 7.7 nM. The fluorescence colors were converted to digital RGB values to calculate the concentration of copper ions by a smartphone with a detection limit of 9.6 nM. The method was applied to detecting copper ions spiked in real samples with recovery from 97.9 to 108.0% and RSD from 3.8 to 8.9%. Thus, this convenient and practical fluorescence color sensing system presents a new strategy for rapid, sensitive, and on-site determination of copper ions in environmental or biological samples.
Collapse
Affiliation(s)
- Xia Wu
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xufeng Meng
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Baoxiu Hou
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhong Sun
- Mengyin Inspection and Testing Center, Linyi, Shandong, 276000, People's Republic of China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
10
|
Qi H, Zhang T, Jing C, Zhang Z, Chen Y, Chen Y, Deng Q, Wang S. Metal-organic gel as a fluorescence sensing platform to trace copper(II). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:52-57. [PMID: 34889920 DOI: 10.1039/d1ay01716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic gel (MOG), as a novel type of metallic organic hybrid material, exhibits diverse properties. However, its application in fluorescence detection for specific metal ions has rarely been exploited. In this work, we have designed and synthesized a MOG based on Al-carboxylate coordination assemblies (denoted as MOG-Al). The resultant MOG-Al shows good specific fluorescence signal response to trace Cu2+. Under optimal conditions, the fluorescence quenching degrees (F0 - F) of the MOG-Al have a linear correlation with Cu2+ concentration ranging from 0.05 to 100 μM, and the limit of detection (LOD) is 45.00 nM. The proposed sensing platform was also applied for the detection of Cu2+ in real samples. Satisfactory recoveries (92-116%) for Cu2+ in rice, soybean milk powder and pork liver were obtained. These results indicate that MOG-Al is a promising material for the specific and sensitive sensing of Cu2+.
Collapse
Affiliation(s)
- Hao Qi
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tianli Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chuang Jing
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhen Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yujie Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yali Chen
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiliang Deng
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China, School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Zhu XY, Yang XN, Luo Y, Redshaw C, Liu M, Tao Z, Xiao X. Construction of a Supramolecular Fluorescence Sensor from Water‐soluble Pillar[5]arene and 1‐Naphthol for Recognition of Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Carl Redshaw
- Department of Chemistry University of Hull Cottingham Rd Hull HU6 7RX, U.K
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| |
Collapse
|
12
|
Xu Z, Wang Y, Zhang J, Shi C, Yang X. A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu 2+ in Water. Foods 2021; 10:foods10112777. [PMID: 34829056 PMCID: PMC8617727 DOI: 10.3390/foods10112777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of copper (II) ions (Cu2+) in water is important for preventing them from entering the human body to preserve human health. Here, a highly sensitive and selective fluorescence probe that uses mercaptopropionic acid (MPA)-capped InP/ZnS quantum dots (MPA-InP/ZnS QDs) was proposed for the detection of trace amounts of Cu2+ in water. The fluorescence of MPA-InP/ZnS QDs can be quenched significantly in the presence of Cu2+, and the fluorescence intensity shows excellent linearity when the concentration of Cu2+ varies from 0–1000 nM; this probe also exhibits an extremely low limit of detection of 0.22 nM. Furthermore, a possible fluorescence-quenching mechanism was proposed. The MPA-InP/ZnS QDs probes were further applied to the detection of trace Cu2+ in real water samples and drink samples, showing good feasibility.
Collapse
Affiliation(s)
- Zeyu Xu
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (Z.X.); (Y.W.)
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (X.Y.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Yizhong Wang
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (Z.X.); (Y.W.)
| | - Jiaran Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (X.Y.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Correspondence:
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (X.Y.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xinting Yang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (X.Y.)
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
13
|
Hu J, Pan LY, Li Y, Zou X, Liu BJ, Jiang B, Zhang CY. Deacetylation-activated construction of single quantum dot-based nanosensor for sirtuin 1 assay. Talanta 2021; 224:121918. [PMID: 33379119 DOI: 10.1016/j.talanta.2020.121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Sirtuin 1 (SIRT1) is an important histone deacetylase that regulates biological functions ranging from DNA repair to metabolism. The alteration of SIRT1 is associated with a variety of diseases including diabetes, inflammation, aging-related diseases, and cancers. Consequently, the detection of SIRT1 activity is of great therapeutic importance. Herein, we demonstrate for the first time the deacetylation-activated construction of single quantum dot (QD)-based nanosensor for sensitive SIRT1 assay. This nanosensor is composed of a Cy5-labeled peptide substrate and a streptavidin-coated QD. The peptide with one lysine acetyl group acts as both the Cy5 fluorophore carrier and the substrate for sensing SIRT1. In the presence of SIRT1, it removes the acetyl group in the acetylated peptide, and the resultant deacetylated peptide can react with the NHS-activated biotin reagent (sulfo-NHS-biotin) to form the biotinylated peptide. The multiple biotinylated peptides can assemble on single QD surface via biotin-streptavidin interaction, inducing efficient fluorescence resonance energy transfer (FRET) from the QD to Cy5, generating distinct Cy5 signal which can be simply quantified by total internal reflection fluorescence-based single-molecule detection. This single QD-based nanosensor can sensitively detect SIRT1 with a detection limit of as low as 3.91 pM, and it can be applied for the measurement of enzyme kinetic parameters and the screening of SIRT1 inhibitors. Moreover, this nanosensor can be used to detect the SIRT1 activity in cancer cells, providing a powerful platform for epigenetic research and SIRT1-targeted drug discovery.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Li-Yuan Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Bing-Jie Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - BingHua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|