1
|
Majed N, Wang Z, Baldwin MT, Foij Uddin SM, Dash P, Gu AZ. Advancements in phosphorus species profiling and bioavailability assessment with implications for phosphorus sustainability. Curr Opin Biotechnol 2025; 93:103295. [PMID: 40147310 DOI: 10.1016/j.copbio.2025.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Phosphorus (P) is an essential nutrient that governs ecosystem productivity, drives global biogeochemical cycles, and plays a central role in water-energy-food nexus. The increasing scarcity of P reserves and their environmental losses necessitate precise detection to monitor P in all contexts for effective and sustainable resource management. This review highlights recent advances in analytical techniques for P speciation and bioavailability across environmental matrices, including both bulk and single-cell methods. Furthermore, recent emerging insights into microbial P cycling were discussed, particularly the role of polyphosphate and polyphosphate-accumulating organisms in dynamic P transformations. By emphasizing the sustainability implications of P, we stress the importance of precise and quantitative detection methods to inform sustainable P management and mitigate the global P crisis.
Collapse
Affiliation(s)
- Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1215, Bangladesh.
| | - Zijian Wang
- School of Biological and Environmental Engineering, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14853, United States
| | - Mathew T Baldwin
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | | | - Pallab Dash
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1215, Bangladesh
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
2
|
Costanza-Robinson MS, Angstman BJ, Cai Q, Forbes C, Keon JS, Lin S, Neill ED, Peebles EG, Roelofs E, Moody EK. Comparison of inductively coupled plasma mass spectrometry and molybdenum blue colorimetry for total phosphorus determination in freshwater invertebrates. PLoS One 2025; 20:e0317871. [PMID: 39874358 PMCID: PMC11774397 DOI: 10.1371/journal.pone.0317871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data. In this work, we compared ICP-MS and MBC for total P determination in freshwater invertebrates, including the potential for analytical interferences, by applying both methods to three standard reference materials (SRMs) and 106 freshwater invertebrate samples. Average total P recoveries for SRMs were slightly higher for ICP-MS (99.8 ± 5.2%) than MBC (96.5 ± 5.4%), but both methods indicated good accuracy. Total P in invertebrates determined using the two methods was strongly linearly correlated (r = 0.96) with a slope of 1.01. On the whole, total P measured using ICP-MS exceeded that measured by MBC, but average pair-wise differences in %P were biologically negligible (0.044 ± 0.054). %P for SRMs and invertebrate samples run on ICP-MS in kinetic energy discrimination and standard modes compared favorably (e.g., SRM P recovery of 102% by both methods), indicating negligible influence of polyatomic ions on ICP-MS analysis. Similarly, analysis of P spike recoveries by ICP-MS (100.2 ± 3.4%) and MBC (107.0 ± 2.8%) were both considered acceptable. We conclude that ICP-MS represents a reliable and comparable alternative to MBC for determining total P in freshwater invertebrates while also offering the opportunity to measure additional biologically relevant elements in a single analysis.
Collapse
Affiliation(s)
- Molly S. Costanza-Robinson
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Baker J. Angstman
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Qiting Cai
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Charles Forbes
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Julia S. Keon
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Shuyi Lin
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Emma D. Neill
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Elizabeth G. Peebles
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Ella Roelofs
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Eric K. Moody
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| |
Collapse
|
3
|
Ruiz-Haddad L, Ali M, Pronk M, van Loosdrecht MC, Saikaly PE. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100387. [PMID: 38322240 PMCID: PMC10845257 DOI: 10.1016/j.ese.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.
Collapse
Affiliation(s)
- Lucia Ruiz-Haddad
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
| | | | - Pascal E. Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
McLamore E, Duckworth O, Boyer TH, Marshall AM, Call DF, Bhadha JH, Guzmán S. Perspective: Phosphorus monitoring must be rooted in sustainability frameworks spanning material scale to human scale. WATER RESEARCH X 2023; 19:100168. [PMID: 36793852 PMCID: PMC9923219 DOI: 10.1016/j.wroa.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is a finite resource, and its environmental fate and transport is complex. With fertilizer prices expected to remain high for years and disruption to supply chains, there is a pressing need to recover and reuse P (primarily as fertilizer). Whether recovery is to occur from urban systems (e.g., human urine), agricultural soil (e.g., legacy P), or from contaminated surface waters, quantification of P in various forms is vital. Monitoring systems with embedded near real time decision support, so called cyber physical systems, are likely to play a major role in the management of P throughout agro-ecosystems. Data on P flow(s) connects the environmental, economic, and social pillars of the triple bottom line (TBL) sustainabilty framework. Emerging monitoring systems must account for complex interactions in the sample, and interface with a dynamic decision support system that considers adaptive dynamics to societal needs. It is known from decades of study that P is ubiquitous, yet without quantitative tools for studying the dynamic nature of P in the environment, the details may remain elusive. If new monitoring systems (including CPS and mobile sensors) are informed by sustainability frameworks, data-informed decision making may foster resource recovery and environmental stewardship from technology users to policymakers.
Collapse
Affiliation(s)
- Eric McLamore
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Agricultural Sciences, Clemson University, United States
- Materials Science and Engineering, North Carolina State University, United States
| | - Owen Duckworth
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Crop and Soil Sciences, North Carolina State University, United States
| | - Treavor H. Boyer
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Department of Sociology, University of Illinois Urbana-Champaign, United States
| | - Anna-Maria Marshall
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, United States
| | - Douglas F. Call
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - Jehangir H. Bhadha
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Soil, Water, and Ecosystem Sciences, University of Florida, Everglades Research and Education Center, Belle Glade, FL, United States
| | - Sandra Guzmán
- Science and Technologies for Phosphorus Sustainability (STEPS) Center, United States
- Agricultural and Biological Engineering, University of Florida, Indian River Research and Education Center, Fort Pierce, FL, United States
| |
Collapse
|
5
|
Xu F, Leng W, Lu Q, Li K, Zhang Y, Liu J, Xu L, Sheng G. Ratiometric fluorescent sensing of phosphate ion in environmental water samples using flavin mononucleotide-functionalized Fe 3O 4 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159249. [PMID: 36220471 DOI: 10.1016/j.scitotenv.2022.159249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Phosphate ion (PO43-) serves as an important nutrient carrier to support the growth of aquatic animals and plants in aquatic systems. However, excess concentrations of PO43- are the key factor responsible for eutrophication, resulting in rapid deterioration of water quality. Therefore, accurate determination of PO43- is of great significance in water quality and security. In this study, flavin mononucleotide (FMN), an intracellular form of vitamin B2, was used as fluorophore. A novel "off-on" fluorescent sensing platform (FMN@Fe3O4) was fabricated for selective and sensitive detection of PO43-, and showed excellent fluorescence response and good selectivity for PO43- detection. With the addition of PO43-, the fluorescence intensity restored is proportional to PO43- concentration in the quantification range of 50 nM-0.75 μM with a limit of detection as low as 20 nM (0.62 μg.L-1, calculated by P element). An adsorption/desorption sensing mechanism via an in-depth analysis of the interfacial interaction between PO43- and FMN@Fe3O4 is proposed. FMN is first adsorbed by its terminal phosphate group on Fe3O4 particles to quench fluorescence. Free PO43- replaces the adsorbed FMN and restores the quenched fluorescence to achieve the aim of PO43- detection. In addition, this sensing system has been successfully validated in real water sample analysis and all reagents involved are nontoxic, environmentally benign, and easily-available. Therefore, this assay has great applicability in water quality monitoring.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Leng
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qinwei Lu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kunpeng Li
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yukuai Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jingyu Liu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liqiang Xu
- Department of Resource Science and Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoping Sheng
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
6
|
Qiao K, Xia J, Wu L. Iron(Ⅲ)-modified resin YZS60 combined with laser-induced fluorescence spectra for the detection of phosphorus after solid-phase extraction in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Wang D, Li Y, Cope HA, Li X, He P, Liu C, Li G, Rahman SM, Tooker NB, Bott CB, Onnis-Hayden A, Singh J, Elfick A, Marques R, Jessen HJ, Oehmen A, Gu AZ. Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance. WATER RESEARCH 2021; 206:117726. [PMID: 34656820 DOI: 10.1016/j.watres.2021.117726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 05/23/2023]
Abstract
Polyphosphate (polyP) accumulating organisms (PAOs) are the key agent to perform enhanced biological phosphorus removal (EBPR) activity, and intracellular polyP plays a key role in this process. Potential associations between EBPR performance and the polyP structure have been suggested, but are yet to be extensively investigated, mainly due to the lack of established methods for polyP characterization in the EBPR system. In this study, we explored and demonstrated that single-cell Raman spectroscopy (SCRS) can be employed for characterizing intracellular polyPs of PAOs in complex environmental samples such as EBPR systems. The results, for the first time, revealed distinct distribution patterns of polyP length (as Raman peak position) in PAOs in lab-scale EBPR reactors that were dominated with different PAO types, as well as among different full-scale EBPR systems with varying configurations. Furthermore, SCRS revealed distinctive polyP composition/features among PAO phenotypic sub-groups, which are likely associated with phylogenetic and/or phenotypic diversity in EBPR communities, highlighting the possible resolving power of SCRS at the microdiversity level. To validate the observed polyP length variations via SCRS, we also performed and compared bulk polyP length characteristics in EBPR biomass using conventional polyacrylamide gel electrophoresis (PAGE) and solution 31P nuclear magnetic resonance (31P-NMR) methods. The results are consistent with the SCRS findings and confirmed the variations in the polyP lengths among different EBPR systems. Compared to conventional methods, SCRS exhibited advantages as compared to conventional methods, including the ability to characterize in situ the intracellular polyPs at subcellular resolution in a label-free and non-destructive way, and the capability to capture subtle and detailed biochemical fingerprints of cells for phenotypic classification. SCRS also has recognized limitations in comparison with 31P-NMR and PAGE, such as the inability to quantitatively detect the average polyP chain length and its distribution. The results provided initial evidence for the potential of SCRS-enabled polyP characterization as an alternative and complementary microbial community phenotyping method to facilitate the phenotype-function (performance) relationship deduction in EBPR systems.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Yueyun Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Black and Veatch, 2999 Oak Road #490, Walnut Creek, CA 94597, United States
| | - Helen A Cope
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoxiao Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Cong Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Sheikh M Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Marston Hall, Amherst, MA 01003, United States
| | - Charles B Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23454, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany; Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Alistair Elfick
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States.
| |
Collapse
|