1
|
Moteshareie H, Hassen WM, Dirieh Y, Groulx E, Dubowski JJ, Tayabali AF. Rapid, Sensitive, and Selective Quantification of Bacillus cereus Spores Using xMAP Technology. Microorganisms 2022; 10:microorganisms10071408. [PMID: 35889128 PMCID: PMC9319878 DOI: 10.3390/microorganisms10071408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several detection reagents were screened for affinity to Bacillus collagen-like protein A (BclA), an abundant exosporium glycoprotein. Sensitivity and selectivity toward B. cereus spores were tested using immunoassays and multi-analyte profiling (xMAP). A recombinant antibody developed in llama against BclA protein showed B. cereus spore selectivity and sensitivity between 102 and 105 spores/mL using xMAP. DNA aptamer sequences demonstrated sensitivity from 103 to 107 spores/mL and no cross-reaction to B. megaterium and B. subtilis. Selectivity for B. cereus spores was also demonstrated in a mixture of several diverse microorganisms and within a food sample with no compromise of sensitivity. As proof of concept for multiplexed measurement of human pathogens, B. cereus and three other microorganisms, E. coli, P. aeruginosa, and S. cerevisiae, were simultaneously detected using xMAP. These data support the development of a rapid, sensitive, and selective system for quantitation of B. cereus spores and multiplexed monitoring of human pathogens in complex matrices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Walid M. Hassen
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
| | - Jan J. Dubowski
- Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (H.M.); (W.M.H.); (J.J.D.)
| | - Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada; (Y.D.); (E.G.)
- Correspondence:
| |
Collapse
|
2
|
Santos Gomes B, Masia F. Photochemical approach for multiplexed biofunctionalisation of gallium arsenide. J Colloid Interface Sci 2022; 625:743-749. [PMID: 35772204 DOI: 10.1016/j.jcis.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 10/31/2022]
Abstract
The optoelectronic properties of gallium arsenide (GaAs) hold great promise in biosensing applications, currently being held back by the lack of methodologies reporting the spatially selective functionalisation of this material with multiple biomolecules. Here, we exploit the use of a photoreactive crosslinker - a diazirine derivative - for spatially selective covalent immobilisation of multiple bioreceptors on the GaAs surface. As a proof of principle we show the immobilisation of two proteins: neutravidin and endosulfine alpha protein. X-ray photoelectron spectroscopy results showed the presence of the biomolecules on the GaAs regions selectively exposed to ultraviolet light. The approach presented here is applicable to the covalent attachment of other biomolecules, paving the way for using GaAs as a platform for multiplexed biosensing.
Collapse
Affiliation(s)
| | - Francesco Masia
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|